Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(14): 7702-7711, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32209665

RESUMEN

Increased human water use combined with climate change have aggravated water scarcity from the regional to global scales. However, the lack of spatially detailed datasets limits our understanding of the historical water use trend and its key drivers. Here, we present a survey-based reconstruction of China's sectoral water use in 341 prefectures during 1965 to 2013. The data indicate that water use has doubled during the entire study period, yet with a widespread slowdown of the growth rates from 10.66 km3⋅y-2 before 1975 to 6.23 km3⋅y-2 in 1975 to 1992, and further down to 3.59 km3⋅y-2 afterward. These decelerations were attributed to reduced water use intensities of irrigation and industry, which partly offset the increase driven by pronounced socioeconomic development (i.e., economic growth, population growth, and structural transitions) by 55% in 1975 to 1992 and 83% after 1992. Adoptions for highly efficient irrigation and industrial water recycling technologies explained most of the observed reduction of water use intensities across China. These findings challenge conventional views about an acceleration in water use in China and highlight the opposing roles of different drivers for water use projections.


Asunto(s)
Desaceleración , Abastecimiento de Agua , Agua , China , Geografía , Humanos , Factores Socioeconómicos
2.
J Adv Model Earth Syst ; 10(8): 1790-1808, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31031883

RESUMEN

Modeling of global soil organic carbon (SOC) is accompanied by large uncertainties. The heavy computational requirement limits our flexibility in disentangling uncertainty sources especially in high latitudes. We build a structured sensitivity analyzing framework through reorganizing the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE)-aMeliorated Interactions between Carbon and Temperature (MICT) model with vertically discretized SOC into one matrix equation, which brings flexibility in comprehensive sensitivity assessment. Through Sobol's method enabled by the matrix, we systematically rank 34 relevant parameters according to variance explained by each parameter and find a strong control of carbon input and turnover time on long-term SOC storages. From further analyses for each soil layer and regional assessment, we find that the active layer depth plays a critical role in the vertical distribution of SOC and SOC equilibrium stocks in northern high latitudes (>50°N). However, the impact of active layer depth on SOC is highly interactive and nonlinear, varying across soil layers and grid cells. The stronger impact of active layer depth on SOC comes from regions with shallow active layer depth (e.g., the northernmost part of America, Asia, and some Greenland regions). The model is sensitive to the parameter that controls vertical mixing (cryoturbation rate) but only when the vertical carbon input from vegetation is limited since the effect of vertical mixing is relatively small. And the current model structure may still lack mechanisms that effectively bury nonrecalcitrant SOC. We envision a future with more comprehensive model intercomparisons and assessments with an ensemble of land carbon models adopting the matrix-based sensitivity framework.

3.
Earths Future ; 5(7): 730-749, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28989942

RESUMEN

Most of the Earth System Models (ESMs) project increases in net primary productivity (NPP) and terrestrial carbon (C) storage during the 21st century. Despite empirical evidence that limited availability of phosphorus (P) may limit the response of NPP to increasing atmospheric CO2, none of the ESMs used in the previous Intergovernmental Panel on Climate Change assessment accounted for P limitation. We diagnosed from ESM simulations the amount of P need to support increases in carbon uptake by natural ecosystems using two approaches: the demand derived from (1) changes in C stocks and (2) changes in NPP. The C stock-based additional P demand was estimated to range between -31 and 193 Tg P and between -89 and 262 Tg P for Representative Concentration Pathway (RCP) 2.6 and RCP8.5, respectively, with negative values indicating a P surplus. The NPP-based demand, which takes ecosystem P recycling into account, results in a significantly higher P demand of 648-1606 Tg P for RCP2.6 and 924-2110 Tg P for RCP8.5. We found that the P demand is sensitive to the turnover of P in decomposing plant material, explaining the large differences between the NPP-based demand and C stock-based demand. The discrepancy between diagnosed P demand and actual P availability (potential P deficit) depends mainly on the assumptions about availability of the different soil P forms. Overall, future P limitation strongly depends on both soil P availability and P recycling on ecosystem scale.

4.
Glob Chang Biol ; 22(12): 3996-4013, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27082541

RESUMEN

Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs.


Asunto(s)
Biomasa , Bosques , Modelos Teóricos , Árboles/crecimiento & desarrollo , Clima Tropical , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...