Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rep Prog Phys ; 87(4)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38373354

RESUMEN

Use and performance criteria of photonic devices increase in various application areas such as information and communication, lighting, and photovoltaics. In many current and future photonic devices, surfaces of a semiconductor crystal are a weak part causing significant photo-electric losses and malfunctions in applications. These surface challenges, many of which arise from material defects at semiconductor surfaces, include signal attenuation in waveguides, light absorption in light emitting diodes, non-radiative recombination of carriers in solar cells, leakage (dark) current of photodiodes, and light reflection at solar cell interfaces for instance. To reduce harmful surface effects, the optical and electrical passivation of devices has been developed for several decades, especially with the methods of semiconductor technology. Because atomic scale control and knowledge of surface-related phenomena have become relevant to increase the performance of different devices, it might be useful to enhance the bridging of surface physics to photonics. Toward that target, we review some evolving research subjects with open questions and possible solutions, which hopefully provide example connecting points between photonic device passivation and surface physics. One question is related to the properties of the wet chemically cleaned semiconductor surfaces which are typically utilized in device manufacturing processes, but which appear to be different from crystalline surfaces studied in ultrahigh vacuum by physicists. In devices, a defective semiconductor surface often lies at an embedded interface formed by a thin metal or insulator film grown on the semiconductor crystal, which makes the measurements of its atomic and electronic structures difficult. To understand these interface properties, it is essential to combine quantum mechanical simulation methods. This review also covers metal-semiconductor interfaces which are included in most photonic devices to transmit electric carriers to the semiconductor structure. Low-resistive and passivated contacts with an ultrathin tunneling barrier are an emergent solution to control electrical losses in photonic devices.

2.
Opt Express ; 31(23): 39039-39048, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38017993

RESUMEN

Development of mid-infrared photonics is gaining attention, driven by a multitude of sensing applications requiring increasingly compact and cost-effective photonics systems. To this end, low-loss operation of µm-scale silicon-on-insulator photonic integration elements is demonstrated for the 2.6-2.7 µm wavelength region. The platform utilizes the 3 µm thick silicon core layer technology enabling demonstration of low-loss and low birefringence waveguides. Measurements of record low single mode waveguide propagation losses of 0.56 ± 0.09 dB/cm and bend losses <0.08 dB for various miniaturized bend geometries are presented and validated by simulation. Furthermore, a wavelength filter based on echelle grating that allows to select several operating channels within the 2.64-2.7 µm band, with a linewidth of ∼1.56 nm for each channel is presented.

3.
ACS Omega ; 8(39): 36355-36360, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810694

RESUMEN

We report the optical properties of GaSbBi layers grown on GaSb (100) substrates with different bismuth contents of 5.8 and 8.0% Bi. Fourier-transform photoluminescence spectra were determined to identify the band gaps of the studied materials. Further temperature- and power-dependent photoluminescence measurements indicated the presence of localized states connected to bismuth clustering. Finally, time-resolved photoluminescence measurements based on single-photon counting allowed the determination of characteristic photoluminescence decay time constants. Because of the increasing bismuth content and clustering effects, an increase in the time constant was observed.

4.
Opt Lett ; 48(5): 1319-1322, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36857278

RESUMEN

Tunable lasers emitting in the 2-3 µm wavelength range that are compatible with photonic integration platforms are of great interest for sensing applications. To this end, combining GaSb-based semiconductor gain chips with Si3N4 photonic integrated circuits offers an attractive platform. Herein, we utilize the low-loss features of Si3N4 waveguides and demonstrate a hybrid laser comprising a GaSb gain chip with an integrated tunable Si3N4 Vernier mirror. At room temperature, the laser exhibited a maximum output power of 15 mW and a tuning range of ∼90 nm (1937-2026 nm). The low-loss performance of several fundamental Si3N4 building blocks for photonic integrated circuits is also validated. More specifically, the single-mode waveguide exhibits a transmission loss as low as 0.15 dB/cm, the 90° bend has 0.008 dB loss, and the 50/50 Y-branch has an insertion loss of 0.075 dB.

5.
J Biomed Opt ; 27(11): 110501, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36458112

RESUMEN

Conventional optoacoustic microscopy (OAM) instruments have at their core a nanosecond pulse duration laser. If lasers with a shorter pulse duration are used, broader, higher frequency ultrasound waves are expected to be generated and as a result, the axial resolution of the instrument is improved. Here, we exploit the advantage offered by a picosecond duration pulse laser to enhance the axial resolution of an OAM instrument. In comparison to an instrument equipped with a 2-ns pulse duration laser, an improvement in the axial resolution of 50% is experimentally demonstrated by using excitation pulses of only 85 ps. To illustrate the capability of the instrument to generate high-quality optoacoustic images, en-face, in-vivo images of the brain of Xenopus laevis tadpole are presented with a lateral resolution of 3.8 µ m throughout the entire axial imaging range.


Asunto(s)
Rayos Láser , Microscopía , Encéfalo , Frecuencia Cardíaca , Ondas de Radio
6.
Opt Express ; 30(14): 24995-25005, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237040

RESUMEN

The development of integrated photonics experiences an unprecedented growth dynamic, owing to accelerated penetration to new applications. This leads to new requirements in terms of functionality, with the most obvious feature being the increased need for wavelength versatility. To this end, we demonstrate for the first time the flip-chip integration of a GaSb semiconductor optical amplifier with a silicon photonic circuit, addressing the transition of photonic integration technology towards mid-IR wavelengths. In particular, an on-chip hybrid DBR laser emitting in the 2 µm region with an output power of 6 mW at room temperature is demonstrated. Wavelength locking was achieved employing a grating realized using 3 µm thick silicon-on-insulator (SOI) technology. The SOI waveguides exhibit strong mode confinement and low losses, as well as excellent mode matching with GaSb optoelectronic chips ensuring low loss coupling. These narrow line-width laser diodes with an on-chip extended cavity can generate a continuous-wave output power of more than 1 mW even when operated at an elevated temperature of 45°C. The demonstration opens an attractive perspective for the on-chip silicon photonics integration of GaSb gain chips, enabling the development of PICs in a broad spectral range extending from 1.8 µm to beyond 3 µm.

7.
ACS Appl Energy Mater ; 5(5): 5804-5810, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35647495

RESUMEN

The optical performance of a multilayer antireflective coating incorporating lithography-free nanostructured alumina is assessed. To this end, the performance of single-junction GaInP solar cells and four-junction GaInP/GaAs/GaInNAsSb/GaInNAsSb multijunction solar cells incorporating the nanostructured alumina is compared against the performance of similar solar cells using conventional double-layer antireflective coating. External quantum efficiency measurements for GaInP solar cells with the nanostructured coating demonstrate angle-independent operation, showing only a marginal difference at 60° incident angle. The average reflectance of the nanostructured antireflective coating is ∼3 percentage points smaller than the reflectance of the double-layer antireflective coating within the operation bandwidth of the GaInP solar cell (280-710 nm), which is equivalent of ∼0.2 mA/cm2 higher current density at AM1.5D (1000 W/m2). When used in conjunction with the four-junction solar cell, the nanostructured coating provides ∼0.8 percentage points lower average reflectance over the operation bandwidth from 280 to 1380 nm. However, it is noted that only the reflectance of the bottom GaInNAsSb junction is improved in comparison to the planar coating. In this respect, since in such solar cells the bottom junction typically is limiting the operation, the nanostructured coating would enable increasing the current density ∼0.6 mA/cm2 in comparison to the standard two-layer coating. The light-biased current-voltage measurements show that the fabrication process for the nanostructured coating does not induce notable recombination or loss mechanisms compared to the established deposition methods. Angle-dependent external quantum efficiency measurements incline that the nanostructured coating excels in oblique angles, and due to low reflectance at a 1000-1800 nm wavelength range, it is very promising for next-generation broadband multijunction solar cells with four or more junctions.

8.
Opt Express ; 30(5): 7883-7893, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299541

RESUMEN

A Tm,Ho:CALGO laser passively mode-locked by a GaSb-based SESAM generated pulses as short as 52 fs at a central wavelength of 2015 nm with a broad spectral bandwidth of 82 nm (full width at half maximum) owing to the combined gain profiles of both dopants for σ-polarized light. The average output power reached 376 mW at a repetition rate of 85.65 MHz. In the continuous-wave regime, the laser was power scaled up to 1.01 W at 2080.6 nm with a slope efficiency of 32.0%, a laser threshold of 155 mW and π-polarized emission. Polarized spectroscopic properties of Ho3+ ions in singly doped and codoped CALGO crystals were revisited to explain the observed laser performance.

9.
Nanotechnology ; 33(18)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35051915

RESUMEN

Cathodoluminescence mapping is used as a contactless method to probe the electron concentration gradient of Te-doped GaAs nanowires. The room temperature and low temperature (10 K) cathodoluminescence analysis method previously developed for GaAs:Si is first validated on five GaAs:Te thin film samples, before extending it to the two GaAs:Te NW samples. We evidence an electron concentration gradient ranging from below 1 × 1018cm-3to 3.3 ×1018cm-3along the axis of a GaAs:Te nanowire grown at 640 °C, and a homogeneous electron concentration of around 6-8 × 1017cm-3along the axis of a GaAs:Te nanowire grown at 620 °C. The differences in the electron concentration levels and gradients between the two nanowires is attributed to different Te incorporation efficiencies by vapor-solid and vapor-liquid-solid processes.

10.
Opt Quantum Electron ; 53(4): 205, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776589

RESUMEN

A numerical study of metal front contacts grid spacing for photovoltaic (PV) converter of relatively small area is presented. The model is constructed based on Solcore, an open-source Python-based library. A three-step-process is developed to create a hybrid quasi-3D model. The grid spacing under various operating conditions was assessed for two similar p-n and n-p structures. The key target was finding optimal configuration to achieve the highest conversion efficiency at different temperatures and illumination profiles. The results show that the n-p structure yields wider optimal spacing range and the highest output power. Also, it was found that temperature increase and illumination nonuniformity results in narrower optimal spacing for both structure architectures. Analyzing the current-voltage characteristics, reveals that resistive losses are the dominant loss mechanism bringing restriction in terms of ability to handle nonuniform illumination.

11.
Opt Express ; 29(16): 25462-25476, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614877

RESUMEN

High-power and narrow-linewidth laser light is a vital tool for atomic physics, being used for example in laser cooling and trapping and precision spectroscopy. Here we produce Watt-level laser radiation at 457.75 nm and 460.86 nm of respective relevance for the cooling transitions of cadmium and strontium atoms. This is achieved via the frequency doubling of a kHz-linewidth vertical-external-cavity surface-emitting laser (VECSEL), which is based on a novel gain chip design enabling lasing at > 2 W in the 915-928 nm region. Following an additional doubling stage, spectroscopy of the 1S0 → 1P1 cadmium transition at 228.87 nm is performed on an atomic beam, with all the transitions from all eight natural isotopes observed in a single continuous sweep of more than 4 GHz in the deep ultraviolet. The absolute value of the transition frequency of 114Cd and the isotope shifts relative to this transition are determined, with values for some of these shifts provided for the first time.

12.
Opt Lett ; 46(11): 2642-2645, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061077

RESUMEN

We report on sub-50 fs pulse generation from a passively mode-locked (ML) Tm,Ho-codoped crystalline laser operating in a 2 µm spectral region. A ${\rm Tm},{\rm Ho}{:}{\rm Ca}({\rm Gd},{\rm Lu}){{\rm AlO}_4}$ laser delivers pulses as short as 46 fs at 2033 nm with an average power of 121 mW at a pulse repetition rate of ${\sim}{78}\;{\rm MHz}$ employing a semiconductor saturable absorber mirror as a saturable absorber. To the best of our knowledge, this result represents the shortest pulses ever generated from a Tm- and/or Ho-based solid-state laser. Polarization switching in the anisotropic gain material is observed in the ML regime without any polarization selection elements which is essential for the shortest pulses.

13.
Appl Opt ; 60(3): 676-680, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33690437

RESUMEN

We present an operational characterization of a vertical-external-cavity surface-emitting laser emitting around 739 nm with over 150 mW in a single fundamental spatial mode. Results show that the laser is capable of oscillating on a single cavity axial mode at 740 nm for up to 22 mW. Tuning of the optical emission is shown to reach 737.3 nm. Furthermore, at best performance, the laser exhibits a slope efficiency of 8.3% and a threshold power of 1.27 W for an output coupler reflectivity of 98%.

14.
Opt Express ; 29(3): 3258-3268, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33770928

RESUMEN

We report the design, growth, and characterization of an AlGaInP-based VECSEL, designed to be optically-pumped with an inexpensive high power blue InGaN diode laser, for emission around 689 nm. Up to 140 mW output power is achieved in a circularly-symmetric single transverse (TEM00) and single longitudinal mode, tunable from 683 to 693 nm. With intensity stabilization of the pump diode and frequency-stabilization of the VECSEL resonator to a reference cavity via the Pound-Drever-Hall technique, we measure the power spectral density of the VECSEL frequency noise, reporting sub-kHz linewidth at 689 nm. The VECSEL relative intensity noise (RIN) is <-130 dBc/Hz for all frequencies above 100 kHz. This compact laser system is suitable for use in quantum technologies, particularly those based on laser-cooled and trapped strontium atoms.

15.
Nanotechnology ; 32(21)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33596557

RESUMEN

A new method for modification of planar multilayer structures to create nanostructured aluminum oxide anti-reflection coatings is reported. The method is non-toxic and low-cost, being based on treatment of the coating with heated de-ionized water after the deposition of aluminum oxide. The results show that the method provides a viable alternative for attaining a low reflectance ARC. In particular, a low average reflectivity of ∼3.3% is demonstrated in a broadband spectrum extending from 400 nm to 2000 nm for ARCs deposited on GaInP solar-cells, the typical material used as top-junction in solar cell tandem architectures. Moreover, the process is compatible with volume manufacturing technologies used in photovoltaics, such as ion beam sputtering and electron beam evaporation.

16.
Nanotechnology ; 32(13): 130001, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33276349

RESUMEN

Several passivation techniques are developed and compared in terms of their ability to preserve the optical properties of close-to-surface InAs/GaAs quantum dots (QDs). In particular, the influence of N-passivation by hydrazine chemical treatment, N-passivation by hydrazine followed by atomic layer deposition (ALD) of AlO x and use of AlN x deposited by plasma-enhanced ALD are reported. The effectiveness of the passivation is benchmarked by measuring the emission linewidths and decay rates of photo-carriers for the near-surface QDs. All three passivation mechanisms resulted in reducing the oxidation of Ga and As atoms at the GaAs surface and consequently in enhancing the room-temperature photoluminescence (PL) intensity. However, long-term stability of the passivation effect is exhibited only by the hydrazine + AlO x process and more significantly by the AlN x method. Moreover, in contrast to the results obtained from hydrazine-based methods, the AlN x passivation strongly reduces the spectral diffusion of the QD exciton lines caused by charge fluctuations at the GaAs surface. The AlN x passivation is found to reduce the surface recombination velocity by three orders of magnitude (corresponding to an increase of room-temperature PL signal by ∼1030 times). The reduction of surface recombination velocity is demonstrated on surface-sensitive GaAs (100) and the passivating effect is stable for more than one year. This effective method of passivation, coupled with its stability in time, is extremely promising for practical device applications such as quantum light sources based on InAs/GaAs QDs positioned in small-volume photonic cavities and hence in the proximity of GaAs-air interface.

17.
Appl Opt ; 59(33): 10493-10497, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33361983

RESUMEN

Mode-locked laser operation near 2.05 µm based on a mixed sesquioxide Tm:LuYO3 ceramic is demonstrated. Continuous-wave and wavelength-tunable operation is also investigated. Employing a GaSb-based semiconductor saturable absorber mirror as a saturable absorber, a maximum average output power of 133 mW is obtained for a pulse duration of 59 fs. Pulses as short as 54 fs, i.e., eight optical cycles are generated at a repetition rate of ∼78MHz with an average output power of 51 mW. To the best of our knowledge, this result represents the shortest pulse duration ever achieved from Tm-based solid-state mode-locked lasers.

18.
Appl Opt ; 59(21): 6304-6308, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32749293

RESUMEN

Quantum dot solar cells are promising for next-generation photovoltaics owing to their potential for improved device efficiency related to bandgap tailoring and quantum confinement of charge carriers. Yet implementing effective photon management to increase the absorptivity of the quantum dots is instrumental. To this end, the performance of thin-film InAs/GaAs quantum dot solar cells with planar and structured back reflectors is reported. The experimental thin-film solar cells with planar reflectors exhibited a bandgap-voltage offset of 0.3 V with an open circuit voltage of 0.884 V, which is one of the highest values reported for quantum dot solar cells grown by molecular beam epitaxy to our knowledge. Using measured external quantum efficiency and current-voltage characteristics, we parametrize a simulation model that was used to design an advanced reflector with diffractive pyramidal gratings revealing a 12-fold increase of the photocurrent generation in the quantum dot layers.

19.
Nanotechnology ; 31(46): 465601, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-32750687

RESUMEN

Precise control and broad tunability of the growth parameters are essential in engineering the optical and electrical properties of semiconductor nanowires (NWs) to make them suitable for practical applications. To this end, we report the effect of As species, namely As2 and As4, on the growth of self-catalyzed GaAs based NWs. The role of As species is further studied in the presence of Te as n-type dopant in GaAs NWs and Sb as an additional group V element to form GaAsSb NWs. Using As4 enhances the growth of NWs in the axial direction over a wide range of growth parameters and diminishes the tendency of Te and Sb to reduce the NW aspect ratio. By extending the axial growth parameter window, As4 allows growth of GaAsSb NWs with up to 47% in Sb composition. On the other hand, As2 favors sidewall growth which enhances the growth in the radial direction. Thus, the selection of As species is critical for tuning not only the NW dimensions, but also the incorporation mechanisms of dopants and ternary elements. Moreover, the commonly observed dependence of twinning on Te and Sb remains unaffected by the As species. By exploiting the extended growth window associated with the use of As4, enhanced Sb incorporation and optical emission up to 1400 nm wavelength range is demonstrated. This wavelength corresponds to the telecom E-band, which opens new prospects for this NW material system in future telecom applications while simultaneously enabling their integration to the silicon photonics platform.

20.
Opt Express ; 28(14): 20879-20887, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32680138

RESUMEN

We demonstrate enhanced optical parametric gains occurring at the edge of periodically poled LiNbO3 (PPLN) regions. Experiments performed in MgO-doped PPLN samples, pumped at 532 nm with parametric signal outputs around 800 nm and 1550 nm, exhibit good agreement with numerical simulations of the nonlinear wave dynamics in the system, based on the assumption of an average refractive index increase Δn = 5.3×10-5 in the PPLN region. Excitation in proximity to the PPLN edge with a pump power of 8.1 mW results in a 3.6-fold output power increase with respect to parametric generation inside the PPLN area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...