Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Sci Rep ; 12(1): 16189, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202865

RESUMEN

Individuals with complete cervical spinal cord injury suffer from a permanent paralysis of upper limbs which prevents them from achieving most of the activities of daily living. We developed a neuroprosthetic solution to restore hand motor function. Electrical stimulation of the radial and median nerves by means of two epineural electrodes enabled functional movements of paralyzed hands. We demonstrated in two participants with complete tetraplegia that selective stimulation of nerve fascicles by means of optimized spreading of the current over the active contacts of the multicontact epineural electrodes induced functional and powerful grasping movements which remained stable over the 28 days of implantation. We also showed that participants were able to trigger the activation of movements of their paralyzed limb using an intuitive interface controlled by voluntary actions and that they were able to perform useful functional movements such as holding a can and drinking through a straw.


Asunto(s)
Terapia por Estimulación Eléctrica , Traumatismos de la Médula Espinal , Actividades Cotidianas , Mano/fisiología , Humanos , Movimiento/fisiología , Cuadriplejía/terapia , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/terapia , Extremidad Superior
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 5089-5093, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085848

RESUMEN

Multi-contact epineural electrical stimulation is a technique that can be used to restore grip movements in people with complete tetraplegia. However, neural stimulation can induce undesired H-reflex. This reflex is known to induce a global lower recruitment threshold together with a steepest recruitment curve leading to a degraded selective response. In this study, during stimulation of the median nerve using a multi-contact cuff electrode, a H-reflex response was observed for one muscle (the pronator teres i.e. PT) among the five recorded. As both M-wave and H-wave were separately recorded, we compared the changes of recruitment, recruitment order and se-lectivity with and without the H-reflex and found that blocking the reflex would have enhance the selectivity and increase the range of the intensity amplitude while providing a higher level of gripping force. Thus, blocking H-reflex is an important issue to further enhance epineural multicontact selective stimulation.


Asunto(s)
Reflejo H , Nervio Mediano , Estimulación Eléctrica , Antebrazo , Humanos , Cuadriplejía
3.
J Electromyogr Kinesiol ; 63: 102646, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35245812

RESUMEN

Implanted stimulation restores hand movement in patients with complete spinal cord injuries. However, assessing the response by surface evoked EMG recordings is challenging because the forearm muscles are small and overlapping. Moreover, M-waves are dependent because they are induced by a single stimulation paradigm. We hypothesized that the M-waves of each muscle has a specific time-frequency signature and we have developed a method to reconstruct the recruitment curves using the energy of this specific time-frequency signature. Orthogonal wavelets are used to analyze individual M-waves. As the selection of the wavelet family and the determination of the time-frequency signature were not trivial, the impact of these choices was evaluated. First, we were able to discriminate the 2 relevant M-waves related to the studied muscles thanks to their specific time-frequency representations. Second, the Meyer family, compared to the Daubechies 2 and 4 families, is the most robust choice against the uncertainty of the time-frequency region definition. Finally, the results are consistent with the semi-quantitative evaluation performed with the MRC scoring. The Meyer wavelet transform combined with the definition of a specific area of interest for each individual muscle allows us to quantitatively and objectively evaluate the evoked EMG in a robust manner.


Asunto(s)
Músculo Esquelético , Traumatismos de la Médula Espinal , Electromiografía/métodos , Mano , Humanos , Análisis de Ondículas
4.
Sensors (Basel) ; 22(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35271086

RESUMEN

Working towards the development of robust motion recognition systems for assistive technology control, the widespread approach has been to use a plethora of, often times, multi-modal sensors. In this paper, we develop single-sensor motion recognition systems. Utilising the peripheral nature of surface electromyography (sEMG) data acquisition, we optimise the information extracted from sEMG sensors. This allows the reduction in sEMG sensors or provision of contingencies in a system with redundancies. In particular, we process the sEMG readings captured at the trapezius descendens and platysma muscles. We demonstrate that sEMG readings captured at one muscle contain distinct information on movements or contractions of other agonists. We used the trapezius and platysma muscle sEMG data captured in able-bodied participants and participants with tetraplegia to classify shoulder movements and platysma contractions using white-box supervised learning algorithms. Using the trapezius sensor, shoulder raise is classified with an accuracy of 99%. Implementing subject-specific multi-class classification, shoulder raise, shoulder forward and shoulder backward are classified with a 94% accuracy amongst object raise and shoulder raise-and-hold data in able bodied adults. A three-way classification of the platysma sensor data captured with participants with tetraplegia achieves a 95% accuracy on platysma contraction and shoulder raise detection.


Asunto(s)
Hombro , Músculos Superficiales de la Espalda , Adulto , Algoritmos , Electromiografía , Humanos , Movimiento , Hombro/fisiología
5.
Artículo en Inglés | MEDLINE | ID: mdl-35235517

RESUMEN

OBJECTIVE: Complete tetraplegia can deprive a person of hand function. Assistive technologies may improve autonomy but needs for ergonomic interfaces for the user to pilot these devices still persist. Despite the paralysis of their arms, people with tetraplegia may retain residual shoulder movements. In this work we explored these movements as a mean to control assistive devices. METHODS: We captured shoulder movement with a single inertial sensor and, by training a support vector machine based classifier, we decode such information into user intent. RESULTS: The setup and training process take only a few minutes and so the classifiers can be user specific. We tested the algorithm with 10 able body and 2 spinal cord injury participants. The average classification accuracy was 80% and 84%, respectively. CONCLUSION: The proposed algorithm is easy to set up, its operation is fully automated, and achieved results are on par with state-of-the-art systems. SIGNIFICANCE: Assistive devices for persons without hand function present limitations in their user interfaces. Our work presents a novel method to overcome some of these limitations by classifying user movement and decoding it into user intent, all with simple setup and training and no need for manual tuning. We demonstrate its feasibility with experiments with end users, including persons with complete tetraplegia without hand function.


Asunto(s)
Dispositivos de Autoayuda , Traumatismos de la Médula Espinal , Brazo , Humanos , Movimiento , Cuadriplejía , Interfaz Usuario-Computador
6.
J Neurotrauma ; 39(9-10): 627-638, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35029125

RESUMEN

Two multi-contact epineural electrodes were placed around radial and median nerves of two subjects with high tetraplegia C4, American Spinal Injury Association Impairment Scale (AIS) A, group 0 of the International Classification for Surgery of the Hand in Tetraplegia. The purpose was to study the safety and capability of these electrodes to generate synergistic motor activation and functional movements and to test control interfaces that allow subjects to trigger pre-programmed stimulation sequences. The device consists of a pair of neural cuff electrodes and percutaneous cables with two extracorporeal connection cables inserted during a surgical procedure and maintained for 28 days. Continuity tests of the electrodes, selectivity of movements induced, motor capacities for grasping and gripping, conformity of the control order, tolerance, and acceptability were assessed. Neither of the two participants showed general and local comorbidity. Acceptability was optimal. None of the stimulation configurations generated contradictory movements. The success rate in task execution by the electro-stimulated hand exceeded the target of 50% (54% and 51% for patients 1 and 2, respectively). The compliance rate of the control orders in both patients was >90% using motion inertial measurement unit (IMU)-based detection and 100% using electromyography (EMG)-based detection in patient 1. These results support the relevance of neural stimulation of the tetraplegic upper limb with a more selective approach, using multi-contact epineural electrodes with nine and six contact points for the median and radial nerve respectively.


Asunto(s)
Terapia por Estimulación Eléctrica , Traumatismos de la Médula Espinal , Terapia por Estimulación Eléctrica/métodos , Electromiografía , Mano , Fuerza de la Mano/fisiología , Humanos , Movimiento/fisiología , Cuadriplejía
7.
World Neurosurg ; 157: 218-232.e14, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34547528

RESUMEN

OBJECTIVE: Sacral anterior root stimulation (SARS) was developed 40 years ago to restore urinary and bowel functions to individuals with spinal cord injury. Mostly used to restore lower urinary tract function, SARS implantation is coupled with sacral deafferentation to counteract the problems of chronic detrusor sphincter dyssynergia and detrusor overactivity. In this article, we systematically review 40 years of SARS implantation and assess the medical added value of this approach in accordance with the PRISMA guidelines. We identified 4 axes of investigation: 1) impact on visceral functions, 2) implantation safety and device reliability, 3) individuals' quality of life, and 4) additional information about the procedure. METHODS: A systematic review was performed. Three databases were consulted: PubMed, EBSCOhost, and Pascal. A total of 219 abstracts were screened and 38 articles were retained for analysis (1147 implantations). RESULTS: The SARS technique showed good clinical results (85.9% of individuals used their implant for micturition and 67.9% to ease bowel movements) and improved individual quality of life. Conversely, several sources of complications were reported after implantation (e.g., surgical complications and failure). CONCLUSIONS: Despite promising results, a decline in implantations was observed. This decline can be linked to the complication rate, as well as to the development of new therapeutics (e.g., botulinum toxin) and directions for research (spinal cord stimulation) that may have an impact on people. Nevertheless, the lack of alternatives in the short-term suggests that the SARS implant is still relevant for the restoration of visceral functions after spinal cord injury.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/terapia , Vejiga Urinaria Neurogénica/etiología , Vejiga Urinaria Neurogénica/terapia , Electrodos Implantados , Humanos , Médula Espinal , Raíces Nerviosas Espinales/fisiopatología , Resultado del Tratamiento
8.
Sensors (Basel) ; 21(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34770527

RESUMEN

Peripheral Nerve Stimulation (PNS) is a promising approach in functional restoration following neural impairments. Although it proves to be advantageous in the number of implantation sites provided compared with intramuscular or epimysial stimulation and the fact that it does not require daily placement, as is the case with surface electrodes, the further advancement of PNS paradigms is hampered by the limitation of spatial selectivity due to the current spread and variations of nerve physiology. New electrode designs such as the Transverse Intrafascicular Multichannel Electrode (TIME) were proposed to resolve this issue, but their use was limited by a lack of innovative multichannel stimulation devices. In this study, we introduce a new portable multichannel stimulator-called STIMEP-and implement different stimulation protocols in rats to test its versatility and unveil the potential of its combined use with TIME electrodes in rehabilitation protocols. We developed and tested various stimulation paradigms in a single fascicle and thereafter implanted two TIMEs. We also tested its stimulation using two different waveforms. The results highlighted the versatility of this new stimulation device and advocated for the parameterizing of a hyperpolarizing phase before depolarization as well as the use of small pulse widths when stimulating with multiple electrodes.


Asunto(s)
Estimulación Eléctrica , Animales , Electrodos , Electrodos Implantados , Ratas
9.
Toxins (Basel) ; 13(5)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067540

RESUMEN

Botulinum toxin-A (BoNT-A) blocks acetylcholine release at the neuromuscular junction (NMJ) and is widely used for neuromuscular disorders (involuntary spasms, dystonic disorders and spasticity). However, its therapeutic effects are usually measured by clinical scales of questionable validity. Single-fiber electromyography (SFEMG) is a sensitive, validated diagnostic technique for NMJ impairment such as myasthenia. The jitter parameter (µs) represents the variability of interpotential intervals of two muscle fibers from the same motor unit. This narrative review reports SFEMG use in BoNT-A treatment. Twenty-four articles were selected from 175 eligible articles searched in Medline/Pubmed and Cochrane Library from their creation until May 2020. The results showed that jitter is sensitive to early NMJ modifications following BoNT-A injection, with an increase in the early days' post-injection and a peak between Day 15 and 30, when symptoms diminish or disappear. The reappearance of symptoms accompanies a tendency for a decrease in jitter, but always precedes its normalization, either delayed or nonexistent. Increased jitter is observed in distant muscles from the injection site. No dose effect relationship was demonstrated. SFEMG could help physicians in their therapeutic evaluation according to the pathology considered. More data are needed to consider jitter as a predictor of BoNT-A clinical efficacy.


Asunto(s)
Toxinas Botulínicas Tipo A/farmacología , Electromiografía/métodos , Fármacos Neuromusculares/farmacología , Inhibidores de la Liberación de Acetilcolina , Humanos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Enfermedades Neuromusculares/tratamiento farmacológico , Enfermedades Neuromusculares/fisiopatología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/metabolismo
10.
Brain Topogr ; 34(2): 221-233, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33400097

RESUMEN

Direct electrical stimulation (DES) is used to perform functional brain mapping during awake surgery and in epileptic patients. DES may be coupled with the measurement of Evoked Potentials (EP) to study the conductive and integrative properties of activated neural ensembles and probe the spatiotemporal dynamics of short- and long-range networks. However, its electrophysiological effects remain by far unknown. We recorded ECoG signals on two patients undergoing awake brain surgery and measured EP on functional sites after cortical stimulations and were the firsts to record three different types of EP on the same patients. Using low-intensity (1-3 mA) to evoke electrogenesis we observed that: (i) "true" remote EPs are attenuated in amplitude and delayed in time due to the divergence of white matter pathways; (ii) "false" remote EPs are attenuated but not delayed: as they originate from the same electrical source; (iii) Singular but reproducible positive components in the EP can be generated when the DES is applied in the temporal lobe or the premotor cortex; and (iv) rare EP can be triggered when the DES is applied subcortically: these can be either negative, or surprisingly, positive. We proposed different activation and electrophysiological propagation mechanisms following DES, based on the nature of activated neural elements and discussed important methodological pitfalls when measuring EP in the brain. Altogether, these results pave the way to map the connectivity in real-time between the DES and the recording sites; to characterize the local electrophysiological states and to link electrophysiology and function. In the future, and in practice, this technique could be used to perform electrophysiological mapping in order to link (non)-functional to electrophysiological responses with DES and could be used to guide the surgical act itself.


Asunto(s)
Neoplasias Encefálicas , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Neoplasias Encefálicas/cirugía , Estimulación Eléctrica , Potenciales Evocados , Humanos , Vigilia
11.
Acta Neurochir (Wien) ; 163(11): 3121-3130, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33433683

RESUMEN

BACKGROUND: Brain-to-brain evoked potentials constitute a new methodology that could help to understand the network-level correlates of electrical stimulation applied for brain mapping during tumor resection. In this paper, we aimed to describe the characteristics of axono-cortical evoked potentials recorded from distinct, but in the same patient, behaviorally eloquent white matter sites. METHODS: We report the intraoperative white matter mapping and axono-cortical evoked potentials recordings observed in a patient operated on under awake condition of a diffuse low-grade glioma in the left middle frontal gyrus. Out of the eight behaviorally eloquent sites identified with 60-Hz electrical stimulation, five were probed with single electrical pulses (delivered at 1 Hz), while recording evoked potentials on two electrodes, covering the inferior frontal gyrus and the precentral gyrus, respectively. Postoperative diffusion-weighted MRI was used to reconstruct the tractograms passing through each of the five stimulated sites. RESULTS: Each stimulated site generated an ACEP on at least one of the recorded electrode contacts. The whole pattern-i.e., the specific contacts with ACEPs and their waveform-was distinct for each of the five stimulated sites. CONCLUSIONS: We found that the patterns of ACEPs provided unique electrophysiological signatures for each of the five white matter functional sites. Our results could ultimately provide neurosurgeons with a new tool of intraoperative electrophysiologically based functional guidance.


Asunto(s)
Neoplasias Encefálicas , Glioma , Sustancia Blanca , Mapeo Encefálico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Estimulación Eléctrica , Potenciales Evocados , Glioma/diagnóstico por imagen , Glioma/cirugía , Humanos , Sustancia Blanca/diagnóstico por imagen
12.
Sensors (Basel) ; 21(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375762

RESUMEN

Patients with central respiratory paralysis can benefit from diaphragm pacing to restore respiratory function. However, it would be important to develop a continuous respiratory monitoring method to alert on apnea occurrence, in order to improve the efficiency and safety of the pacing system. In this study, we present a preliminary validation of an acoustic apnea detection method on healthy subjects data. Thirteen healthy participants performed one session of two 2-min recordings, including a voluntary respiratory pause. The recordings were post-processed by combining temporal and frequency detection domains, and a new method was proposed-Phonocardiogram-Derived Respiration (PDR). The detection results were compared to synchronized pneumotachograph, electrocardiogram (ECG), and abdominal strap (plethysmograph) signals. The proposed method reached an apnea detection rate of 92.3%, with 99.36% specificity, 85.27% sensitivity, and 91.49% accuracy. PDR method showed a good correlation of 0.77 with ECG-Derived Respiration (EDR). The comparison of R-R intervals and S-S intervals also indicated a good correlation of 0.89. The performance of this respiratory detection algorithm meets the minimal requirements to make it usable in a real situation. Noises from the participant by speaking or from the environment had little influence on the detection result, as well as body position. The high correlation between PDR and EDR indicates the feasibility of monitoring respiration with PDR.


Asunto(s)
Electrocardiografía , Respiración , Algoritmos , Apnea , Humanos , Monitoreo Fisiológico , Procesamiento de Señales Asistido por Computador
13.
J Neural Eng ; 17(4): 046006, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32512544

RESUMEN

OBJECTIVE: Micro-fabricated neural interfaces based on polyimide (PI) are achieving increasing importance in translational research. The ability to produce well-defined micro-structures with properties that include chemical inertness, mechanical flexibility and low water uptake are key advantages for these devices. APPROACH: This paper reports the development of the transverse intrafascicular multichannel electrode (TIME) used to deliver intraneural sensory feedback to an upper-limb amputee in combination with a sensorized hand prosthesis. A failure mode analysis on the explanted devices was performed after a first-in-human study limited to 30 d. MAIN RESULTS: About 90% of the stimulation contact sites of the TIMEs maintained electrical functionality and stability during the full implant period. However, optical analysis post-explantation revealed that 62.5% of the stimulation contacts showed signs of delamination at the metallization-PI interface. Such damage likely occurred due to handling during explantation and subsequent analysis, since a significant change in impedance was not observed in vivo. Nevertheless, whereas device integrity is mandatory for long-term functionality in chronic implantation, measures to increase the bonding strength of the metallization-PI interface deserve further investigation. We report here that silicon carbide (SiC) is an effective adhesion-promoting layer resisting heavy electrical stimulation conditions within a rodent animal trial. Optical analysis of the new electrodes revealed that the metallization remained unaltered after delivering over 14 million pulses in vivo without signs of delamination at the metallization-PI interface. SIGNIFICANCE: Failure mode analysis guided implant stability optimization. Reliable adhesion of thin-film metallization to substrate has been proven using SiC, improving the potential transfer of micro-fabricated neural electrodes for chronic clinical applications. (Document number of Ethical Committee: P/905/CE/2012; Date of approval: 2012-10-04).


Asunto(s)
Amputados , Prótesis e Implantes , Animales , Impedancia Eléctrica , Estimulación Eléctrica , Electrodos , Electrodos Implantados , Humanos , Microelectrodos
14.
J Neuroeng Rehabil ; 17(1): 66, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32429963

RESUMEN

BACKGROUND: We hypothesized that a selective neural electrical stimulation of radial and median nerves enables the activation of functional movements in the paralyzed hand of individuals with tetraplegia. Compared to previous approaches for which up to 12 muscles were targeted through individual muscular stimulations, we focused on minimizing the number of implanted electrodes however providing almost all the needed and useful hand movements for subjects with complete tetraplegia. METHODS: We performed acute experiments during scheduled surgeries of the upper limb with eligible subjects. We scanned a set of multicontact neural stimulation cuff electrode configurations, pre-computed through modeling simulations. We reported the obtained isolated and functional movements that were considered useful for the subject (different grasping movements). RESULTS: In eight subjects, we demonstrated that selective stimulation based on multicontact cuff electrodes and optimized current spreading over the active contacts provided isolated, compound, functional and strong movements; most importantly 3 out of 4 had isolated fingers or thumb flexion, one patient performed a Key Grip, another one the Power and Hook Grips, and the 2 last all the 3 Grips. Several configurations were needed to target different areas within the nerve to obtain all the envisioned movements. We further confirmed that the upper limb nerves have muscle specific fascicles, which makes it possible to activate isolated movements. CONCLUSIONS: The future goal is to provide patients with functional restoration of object grasping and releasing with a minimally invasive solution: only two cuff electrodes above the elbow. Ethics Committee / ANSM clearance prior to the beginning of the study (inclusion period 2016-2018): CPP Sud Méditerranée, #ID-RCB:2014-A01752-45, first acceptance 10th of February 2015, amended 12th of January 2016. TRIAL REGISTRATION: (www.clinicaltrials.gov): #NCT03721861, Retrospectively registered on 26th of October 2018.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Nervio Mediano/cirugía , Cuadriplejía/terapia , Nervio Radial/cirugía , Traumatismos de la Médula Espinal/terapia , Adulto , Electrodos Implantados , Antebrazo/fisiopatología , Mano/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Movimiento/fisiología , Cuadriplejía/etiología , Traumatismos de la Médula Espinal/complicaciones , Adulto Joven
15.
Comput Biol Med ; 118: 103638, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32174314

RESUMEN

BACKGROUND: Partial arterial pressure of carbon dioxide (CO2) modulates cerebral blood flow through a vasoreactivity mechanism. Near infrared spectroscopy (NIRS) can be used to record these changes in cerebral hemodynamics. However, no laterality comparison of the NIRS signal has been performed despite being a prerequisite for the use of such a method in a vasoreactivity monitoring context. We propose to investigate the NIRS signal laterality in response to a CO2-inhalation-based hypercapnia paradigm in healthy volunteers. METHODS: Eleven healthy volunteers (6 women, 5 men, mean age: 31 ± 11) underwent a 3-block-design inhalation paradigm: normoxia (5min, "baseline") - hypercapnia (2min, "stimulation") - normoxia (5min, "post-stimulation"). NIRS signal was measured using a two-channel oximeter (INVOS 5100C, Medtronic, USA) with sensors placed symmetrically on both left and right sides on each subject's forehead. Additional heart rate (HR) monitoring was performed simultaneously. Based on the NIRS mean signal pattern, an a priori model of parametric identification was applied for each channel to quantify parameters of interest (amplitude, time delay, excitation and post-stimulation time) for each inhalation block. RESULTS: HR increased significantly during the stimulation block. The quality of the model was satisfactory: mean absolute errors between modeled and experimental signals were lower than the resolution of the device. No significant lateralization was found between left and right values of most of the parameters. CONCLUSION: Due to the lack of lateralization, this parametric identification of NIRS responses to hypercapnia could bring light to a potential asymmetry and be used as a biomarker in patients with cerebrovascular diseases.


Asunto(s)
Hipercapnia , Espectroscopía Infrarroja Corta , Adulto , Dióxido de Carbono , Circulación Cerebrovascular , Femenino , Humanos , Masculino , Oximetría , Adulto Joven
16.
Front Neurosci ; 14: 117, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32140095

RESUMEN

This paper presents a wireless distributed Functional Electrical Stimulation (FES) architecture. It is based on a set of, potentially heterogeneous, distributed stimulation and measurement units managed by a wearable controller. Through a proof-of-concept application, the characterization of the wireless network performances was assessed to check the adequacy of this solution with open-loop and closed-loop control requirements. We show the guaranteed time performances over the network through the control of quadriceps and hamstrings stimulation parameters based on the monitoring of the knee joint angle. Our solution intends to be a tool for researchers and therapists to develop closed-loop control algorithms and strategies for rehabilitation, allowing the design of wearable systems for a daily use context.

17.
Brain Topogr ; 33(1): 143-148, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31559555

RESUMEN

Direct electrical stimulation (DES) is used to perform functional brain mapping during awake surgery but its electrophysiological effects remain by far unknown. DES may be coupled with the measurement of evoked potentials (EPs) to study the conductive and integrative properties of activated neural ensembles and probe the spatiotemporal dynamics of short- and long-range networks. We recorded ECoG signals on two patients undergoing awake brain surgery and measured EPs on functional sites after cortical stimulations, using combinations of stimulation parameters. EPs were similar in shape but delayed in time and attenuated in amplitude when elicited from a different gyrus or remotely from the recording site. We were able to trigger remote EPs using low stimulation intensities. We propose different activation and electrophysiological propagation mechanisms following DES based on activated neural elements.


Asunto(s)
Neoplasias Encefálicas/cirugía , Encéfalo/fisiología , Estimulación Eléctrica/métodos , Potenciales Evocados , Mapeo Encefálico , Electrocorticografía , Femenino , Humanos , Masculino , Vigilia
18.
Sci Transl Med ; 11(512)2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578244

RESUMEN

Lower limb amputation (LLA) destroys the sensory communication between the brain and the external world during standing and walking. Current prostheses do not restore sensory feedback to amputees, who, relying on very limited haptic information from the stump-socket interaction, are forced to deal with serious issues: the risk of falls, decreased mobility, prosthesis being perceived as an external object (low embodiment), and increased cognitive burden. Poor mobility is one of the causes of eventual device abandonment. Restoring sensory feedback from the missing leg of above-knee (transfemoral) amputees and integrating the sensory feedback into the sensorimotor loop would markedly improve the life of patients. In this study, we developed a leg neuroprosthesis, which provided real-time tactile and emulated proprioceptive feedback to three transfemoral amputees through nerve stimulation. The feedback was exploited in active tasks, which proved that our approach promoted improved mobility, fall prevention, and agility. We also showed increased embodiment of the lower limb prosthesis (LLP), through phantom leg displacement perception and questionnaires, and ease of the cognitive effort during a dual-task paradigm, through electroencephalographic recordings. Our results demonstrate that induced sensory feedback can be integrated at supraspinal levels to restore functional abilities of the missing leg. This work paves the way for further investigations about how the brain interprets different artificial feedback strategies and for the development of fully implantable sensory-enhanced leg neuroprostheses, which could drastically ameliorate life quality in people with disability.


Asunto(s)
Miembros Artificiales , Cognición/fisiología , Extremidad Inferior/cirugía , Actividades Cotidianas , Amputados , Humanos , Articulación de la Rodilla/fisiopatología , Articulación de la Rodilla/cirugía , Extremidad Inferior/fisiopatología , Diseño de Prótesis
19.
Sensors (Basel) ; 19(20)2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31635286

RESUMEN

Individuals who sustained a spinal cord injury often lose important motor skills, and cannot perform basic daily living activities. Several assistive technologies, including robotic assistance and functional electrical stimulation, have been developed to restore lost functions. However, designing reliable interfaces to control assistive devices for individuals with C4-C8 complete tetraplegia remains challenging. Although with limited grasping ability, they can often control upper arm movements via residual muscle contraction. In this article, we explore the feasibility of drawing upon these residual functions to pilot two devices, a robotic hand and an electrical stimulator. We studied two modalities, supra-lesional electromyography (EMG), and upper arm inertial sensors (IMU). We interpreted the muscle activity or arm movements of subjects with tetraplegia attempting to control the opening/closing of a robotic hand, and the extension/flexion of their own contralateral hand muscles activated by electrical stimulation. Two groups were recruited: eight subjects issued EMG-based commands; nine other subjects issued IMU-based commands. For each participant, we selected at least two muscles or gestures detectable by our algorithms. Despite little training, all participants could control the robot's gestures or electrical stimulation of their own arm via muscle contraction or limb motion.


Asunto(s)
Fuerza de la Mano/fisiología , Contracción Muscular/fisiología , Cuadriplejía/fisiopatología , Adulto , Algoritmos , Brazo/fisiología , Estimulación Eléctrica , Electromiografía , Humanos , Masculino , Persona de Mediana Edad , Robótica , Hombro/fisiología , Adulto Joven
20.
Comput Biol Med ; 115: 103480, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31629271

RESUMEN

In this study, we present a new model describing the mechanical behavior of the skeletal muscle during isometric contraction. This model is based on a former Hill-inspired model detailing the electromechanical behavior of the muscle based on the Huxley formulation. However, in this new multiscale model the muscle is represented at the Motor Unit (MU) scale. The proposed model is driven by a physiological input describing the firing moments of the activated MUs. Definition of both voluntary and evoked MU recruitment schemes are described, enabling the study of both contractions in isometric conditions. During this type of contraction, there is no movement of the joints and the tendon-muscle complex remains at the same length. Moreover, some well-established macroscopic relationships such as force-length or force-velocity properties are considered. A comparison with a twitch model using the same input definition is provided with both recruitment schemes exhibiting limitations of twitch type models. Finally, the proposed model is validated with a comparison between simulated and recorded force profiles following eight electrical stimulations pulses in isometric conditions. The simulated muscle force was generated to mimic the one recorded from the quadriceps of a patient implanted with a functional electrical stimulation neuroprosthesis. This validation demonstrates the ability of the proposed model to reproduce realistically the skeletal muscle contractions and to take into account subject-specific parameters.


Asunto(s)
Contracción Isométrica , Modelos Biológicos , Neuronas Motoras , Músculo Esquelético/fisiopatología , Reclutamiento Neurofisiológico , Estimulación Eléctrica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA