Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983060

RESUMEN

Ageing is associated with notorious alterations in neurons, i.e., in gene expression, mitochondrial function, membrane degradation or intercellular communication. However, neurons live for the entire lifespan of the individual. One of the reasons why neurons remain functional in elderly people is survival mechanisms prevail over death mechanisms. While many signals are either pro-survival or pro-death, others can play both roles. Extracellular vesicles (EVs) can signal both pro-toxicity and survival. We used young and old animals, primary neuronal and oligodendrocyte cultures and neuroblastoma and oligodendrocytic lines. We analysed our samples using a combination of proteomics and artificial neural networks, biochemistry and immunofluorescence approaches. We found an age-dependent increase in ceramide synthase 2 (CerS2) in cortical EVs, expressed by oligodendrocytes. In addition, we show that CerS2 is present in neurons via the uptake of oligodendrocyte-derived EVs. Finally, we show that age-associated inflammation and metabolic stress favour CerS2 expression and that oligodendrocyte-derived EVs loaded with CerS2 lead to the expression of the antiapoptotic factor Bcl2 in inflammatory conditions. Our study shows that intercellular communication is altered in the ageing brain, which favours neuronal survival through the transfer of oligodendrocyte-derived EVs containing CerS2.


Asunto(s)
Vesículas Extracelulares , Neuronas , Animales , Vesículas Extracelulares/metabolismo , Encéfalo/metabolismo , Inflamación/metabolismo
2.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163295

RESUMEN

Extracellular vesicles (EVs) play an important role in intercellular communication and are involved in both physiological and pathological processes. In the central nervous system (CNS), EVs secreted from different brain cell types exert a sundry of functions, from modulation of astrocytic proliferation and microglial activation to neuronal protection and regeneration. However, the effect of aging on the biological functions of neural EVs is poorly understood. In this work, we studied the biological effects of small EVs (sEVs) isolated from neural cells maintained for 14 or 21 days in vitro (DIV). We found that EVs isolated from 14 DIV cultures reduced the extracellular levels of lactate dehydrogenase (LDH), the expression levels of the astrocytic protein GFAP, and the complexity of astrocyte architecture suggesting a role in lowering the reactivity of astrocytes, while EVs produced by 21 DIV cells did not show any of the above effects. These results in an in vitro model pave the way to evaluate whether similar results occur in vivo and through what mechanisms.


Asunto(s)
Astrocitos/metabolismo , Vesículas Extracelulares/metabolismo , Neuronas/metabolismo , Factores de Edad , Envejecimiento , Animales , Astrocitos/fisiología , Encéfalo/metabolismo , Sistema Nervioso Central/fisiología , Vesículas Extracelulares/fisiología , Proteína Ácida Fibrilar de la Glía/análisis , Proteína Ácida Fibrilar de la Glía/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , L-Lactato Deshidrogenasa/análisis , Microglía/metabolismo , Neuronas/fisiología , Cultivo Primario de Células , Ratas , Ratas Wistar , Factores de Tiempo
3.
Life Sci Alliance ; 4(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34183444

RESUMEN

As neurons age, they show a decrease in their ability to degrade proteins and membranes. Because undegraded material is a source of toxic products, defects in degradation are associated with reduced cell function and survival. However, there are very few dead neurons in the aging brain, suggesting the action of compensatory mechanisms. We show in this work that ageing neurons in culture show large multivesicular bodies (MVBs) filled with intralumenal vesicles (ILVs) and secrete more small extracellular vesicles than younger neurons. We also show that the high number of ILVs is the consequence of the accumulation of cholesterol in MVBs, which in turn is due to decreased levels of the cholesterol extruding protein NPC1. NPC1 down-regulation is the consequence of a combination of upregulation of the NPC1 repressor microRNA 33, and increased degradation, due to Akt-mTOR targeting of NPC1 to the phagosome. Although releasing more exosomes can be beneficial to old neurons, other cells, neighbouring and distant, can be negatively affected by the waste material they contain.


Asunto(s)
Colesterol/metabolismo , Exosomas/metabolismo , MicroARNs/genética , Cuerpos Multivesiculares/metabolismo , Neuronas/citología , Proteína Niemann-Pick C1/genética , Animales , Línea Celular , Senescencia Celular , Regulación hacia Abajo , Células HEK293 , Humanos , Ratones , Neuronas/metabolismo , Cultivo Primario de Células , Ratas , Transducción de Señal
5.
Front Neurosci ; 14: 562581, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343276

RESUMEN

In humans, a considerable number of the autopsy samples of cognitively normal individuals aged between 57 and 102 years have revealed the presence of amyloid plaques, one of the typical signs of AD, indicating that many of us use mechanisms that defend ourselves from the toxic consequences of Aß. The human APP NL/F (hAPP NL/F) knockin mouse appears as the ideal mouse model to identify these mechanisms, since they have high Aß42 levels at an early age and moderate signs of disease when old. Here we show that in these mice, the brain levels of the hemoprotein Neuroglobin (Ngb) increase with age, in parallel with the increase in Aß42. In vitro, in wild type neurons, exogenous Aß increases the expression of Ngb and Ngb over-expression prevents Aß toxicity. In vivo, in old hAPP NL/F mice, Ngb knockdown leads to dendritic tree simplification, an early sign of Alzheimer's disease. These results could indicate that Alzheimer's symptoms may start developing at the time when defense mechanisms start wearing out. In agreement, analysis of plasma Ngb levels in aged individuals revealed decreased levels in those whose cognitive abilities worsened during a 5-year longitudinal follow-up period.

6.
Oxid Med Cell Longev ; 2020: 2739459, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33014268

RESUMEN

Alzheimer's disease (AD) is tightly linked to oxidative stress since amyloid beta-peptide (Aß) aggregates generate free radicals. Moreover, the aggregation of Aß is increased by oxidative stress, and the neurotoxicity induced by the oligomers and fibrils is in part mediated by free radicals. Interestingly, it has been reported that oxidative stress can also induce BACE1 transcription and expression. BACE1 is the key enzyme in the cleavage of the amyloid precursor protein to produce Aß, and the expression of this enzyme has been previously shown to be enhanced in the brains of Alzheimer's patients. Here, we have found that BACE1 expression is increased in the hippocampi from AD patients at both the early (Braak stage II) and late (Braak stage VI) stages of the disease as studied by immunohistochemistry and western blot. To address the role of Aß and oxidative stress in the regulation of BACE1 expression, we have analyzed the effect of subtoxic concentrations of Aß oligomers (0.25 µM) and H2O2 (10 mM) on a human neuroblastoma cell line. Firstly, our results show that Aß oligomers and H2O2 induce an increase of BACE1 mRNA as we studied by qPCR. Regarding BACE1 translation, it is dependent on the phosphorylation of the eukaryotic initiation factor 2α (eIF2α), since BACE1 mRNA bears a 5'UTR that avoids its translation under basal conditions. BACE1 5'UTR contains four upstream initiating codons (uAUGs), and its translation is activated when eIF2α is phosphorylated. Consistently, we have obtained that Aß oligomers and H2O2 increase the levels of BACE1 and p-eIF2α assayed by western blot and confocal microscopy. Our results suggest that Aß oligomers increase BACE1 translation by phosphorylating eIF2α in a process that involves oxidative stress and conforms a pathophysiological loop, where the Aß once aggregated favors its own production continuously by the increase in BACE1 expression as observed in AD patients.


Asunto(s)
Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/farmacología , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regiones no Traducidas 5' , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Fosforilación
7.
J Neurosci Res ; 98(2): 262-283, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31549445

RESUMEN

The finding of an effective cure or treatment for neurodegenerative diseases is one of the biggest challenges for this century. Although these diseases show different clinical manifestations, the presence of toxic protein aggregates in the brain of patients is a common feature to all of them, suggesting a loss of protein homeostasis. Aging, the primary risk factor for the majority of neurodegenerative disorders, is linked to the impairment of degradative compartments such as lysosomes and autophagosomes. Besides, many genetic factors for Alzheimer's disease, Parkinson's disease, or frontotemporal dementia, as examples of frequent neurodegenerative diseases, are causative of endo-lysosomal and autophagosomal dysfunctions. There is scientific evidence suggesting that neurons can counteract the accumulation of undegraded cellular material by the secretion of extracellular vesicles (EVs), which are vesicles with a size ranging from 50 to 100 nm generated in a type of endosomal compartment named multivesicular body. EVs play a crucial role in removing cellular waste, promoting protein aggregation, and spreading toxic protein aggregates in the brain of patients. In this review, the interplay between the impairment of degradative compartments, the secretion of EVs, and their pathological/beneficial role in neurodegeneration is described.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Degeneración Nerviosa/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteostasis/fisiología , Envejecimiento/patología , Animales , Encéfalo/patología , Vesículas Extracelulares/patología , Humanos , Degeneración Nerviosa/patología , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología
8.
J Alzheimers Dis Rep ; 3(1): 113-148, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31259308

RESUMEN

 Human life unfolds not only in time and space, but also in the recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered under pathological conditions such as Alzheimer's disease, which affects millions of people worldwide. Unfortunately, no effective cure exists to prevent this disorder, the impact of which will rise alarmingly within the next decades. While Alzheimer's disease is largely considered to be the outcome of amyloid-ß (Aß) peptide accumulation in the brain, conceiving this complex disorder strictly as the result of Aß-neurotoxicity is perhaps a too straight-line simplification. Instead, complementary to this view, the tableau of molecular disarrangements in the Alzheimer's disease brain may be reflecting, at least in part, a loss of function phenotype in memory processing. Here we take BACE1 translation and degradation as a gateway to study molecular mechanisms putatively involved in the transition between memory and neurodegeneration. BACE1 participates in the excision of Aß-peptide from its precursor holoprotein, but plays a role in synaptic plasticity too. Its translation is governed by eIF2α phosphorylation: a hub integrating cellular responses to stress, but also a critical switch in memory consolidation. Paralleling these dualities, the eIF2α-kinase HRI has been shown to be a nitric oxide-dependent physiological activator of hippocampal BACE1 translation. Finally, beholding BACE1 as a representative protease active in the CNS, we venture a new perspective on the cellular basis of memory, which may incorporate neurodegeneration in itself as a drift in memory consolidating systems.

9.
Int J Mol Sci ; 19(3)2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29495441

RESUMEN

Progressive cerebral accumulation of tau aggregates is a defining feature of Alzheimer's disease (AD). A popular theory that seeks to explain the apparent spread of neurofibrillary tangle pathology proposes that aggregated tau is passed from neuron to neuron. Such a templated seeding process requires that the transferred tau contains the microtubule binding repeat domains that are necessary for aggregation. While it is not clear how a protein such as tau can move from cell to cell, previous reports have suggested that this may involve extracellular vesicles (EVs). Thus, measurement of tau in EVs may both provide insights on the molecular pathology of AD and facilitate biomarker development. Here, we report the use of sensitive immunoassays specific for full-length (FL) tau and mid-region tau, which we applied to analyze EVs from human induced pluripotent stem cell (iPSC)-derived neuron (iN) conditioned media, cerebrospinal fluid (CSF), and plasma. In each case, most tau was free-floating with a small component inside EVs. The majority of free-floating tau detected by the mid-region assay was not detected by our FL assays, indicating that most free-floating tau is truncated. Inside EVs, the mid-region assay also detected more tau than the FL assay, but the ratio of FL-positive to mid-region-positive tau was higher inside exosomes than in free solution. These studies demonstrate the presence of minute amounts of free-floating and exosome-contained FL tau in human biofluids. Given the potential for FL tau to aggregate, we conclude that further investigation of these pools of extracellular tau and how they change during disease is merited.


Asunto(s)
Vesículas Extracelulares/metabolismo , Neuronas/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Alelos , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Apolipoproteínas E/genética , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Diferenciación Celular , Disfunción Cognitiva/sangre , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/metabolismo , Exosomas/metabolismo , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Neuronas/citología , Proteínas tau/líquido cefalorraquídeo
13.
Mol Neurodegener ; 12(1): 25, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28279219

RESUMEN

BACKGROUND: The mechanisms behind Aß-peptide accumulation in non-familial Alzheimer's disease (AD) remain elusive. Proteins of the tetraspanin family modulate Aß production by interacting to γ-secretase. METHODS: We searched for tetraspanins with altered expression in AD brains. The function of the selected tetraspanin was studied in vitro and the physiological relevance of our findings was confirmed in vivo. RESULTS: Tetraspanin-6 (TSPAN6) is increased in AD brains and overexpression in cells exerts paradoxical effects on Amyloid Precursor Protein (APP) metabolism, increasing APP-C-terminal fragments (APP-CTF) and Aß levels at the same time. TSPAN6 affects autophagosome-lysosomal fusion slowing down the degradation of APP-CTF. TSPAN6 recruits also the cytosolic, exosome-forming adaptor syntenin which increases secretion of exosomes that contain APP-CTF. CONCLUSIONS: TSPAN6 is a key player in the bifurcation between lysosomal-dependent degradation and exosome mediated secretion of APP-CTF. This corroborates the central role of the autophagosomal/lysosomal pathway in APP metabolism and shows that TSPAN6 is a crucial player in APP-CTF turnover.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Tetraspaninas/metabolismo , Animales , Western Blotting , Exosomas/metabolismo , Exosomas/ultraestructura , Humanos , Imagenología Tridimensional , Inmunohistoquímica , Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Neuronas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
PLoS One ; 12(2): e0171968, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28207852

RESUMEN

Tetraspanins (Tspan) are transmembrane proteins with important scaffold and signalling functions. Deletions of Tetraspanin 6 (Tspan6) gene, a member of the tetraspanin family, have been reported in patients with Epilepsy Female-restricted with Mental Retardation (EFMR). Interestingly, mutations in Tspan7, highly homologous to Tspan6, are associated with X-linked intellectual disability, suggesting that these two proteins are important for cognition. Considering recent evidences showing that Tspan7 plays a key role in synapse development and AMPAR trafficking, we initiated the study of Tspan6 in synaptic function using a Tspan6 knock out mouse model. Here we report that hippocampal field recordings from Tspan6 knock out mice show an enhanced basal synaptic transmission and impaired long term potentiation (LTP). A normal paired-pulse facilitation response suggests that Tspan6 affects the properties of the postsynaptic rather than the presynaptic terminal. However, no changes in spine morphology or postsynaptic markers could be detected in Tspan6 KO mice compared with wild types. In addition, Tspan6 KO mice show normal locomotor behaviour and no defects in hippocampus-dependent memory tests.


Asunto(s)
Conducta Animal , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Transmisión Sináptica/fisiología , Tetraspaninas/fisiología , Animales , Femenino , Hipocampo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal
15.
Antioxid Redox Signal ; 22(15): 1295-307, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25706765

RESUMEN

AIMS: Hippocampus is the brain center for memory formation, a process that requires synaptogenesis. However, hippocampus is dramatically compromised in Alzheimer's disease due to the accumulation of amyloid ß-peptide, whose production is initiated by ß-site APP Cleaving Enzyme 1 (BACE1). It is known that pathological stressors activate BACE1 translation through the phosphorylation of the eukaryotic initiation factor-2α (eIF2α) by GCN2, PERK, or PKR kinases, leading to amyloidogenesis. However, BACE1 physiological regulation is still unclear. Since nitric oxide (NO) participates directly in hippocampal glutamatergic signaling, we investigated the neuronal role of the heme-regulated eukaryotic initiation factor eIF2α kinase (HRI), which can bind NO by a heme group, in BACE1 translation and its physiological consequences. RESULTS: We found that BACE1 is expressed on glutamate activation with NO being the downstream effector by triggering eIF2α phosphorylation, as it was obtained by Western blot and luciferase assay. It is due to the activation of HRI by NO as assayed by Western blot and immunofluorescence with an HRI inhibitor and HRI siRNA. BACE1 expression was early detected at synaptic spines, contributing to spine growth and consolidating the hippocampal memory as assayed with mice treated with HRI or neuronal NO synthase inhibitors. INNOVATION: We provide the first description that HRI and eIF2α are working in physiological conditions in the brain under the control of nitric oxide and glutamate signaling, and also that BACE1 has a physiological role in hippocampal function. CONCLUSION: We conclude that BACE1 translation is controlled by NO through HRI in glutamatergic hippocampal synapses, where it plays physiological functions, allowing the spine growth and memory consolidation.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Sinapsis/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Células Cultivadas , Factor 2 Eucariótico de Iniciación/metabolismo , Ácido Glutámico/farmacología , Hipocampo/embriología , Hipocampo/metabolismo , Humanos , Consolidación de la Memoria , Ratones , Neuronas/citología , Fosforilación , Biosíntesis de Proteínas , Ratas
16.
Biochim Biophys Acta ; 1852(3): 421-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25500153

RESUMEN

Ischemic stroke is an acute vascular event that compromises neuronal viability, and identification of the pathophysiological mechanisms is critical for its correct management. Ischemia produces increased nitric oxide synthesis to recover blood flow but also induces a free radical burst. Nitric oxide and superoxide anion react to generate peroxynitrite that nitrates tyrosines. We found that fibrinogen nitrotyrosination was detected in plasma after the initiation of ischemic stroke in human patients. Electron microscopy and protein intrinsic fluorescence showed that in vitro nitrotyrosination of fibrinogen affected its structure. Thromboelastography showed that initially fibrinogen nitrotyrosination retarded clot formation but later made the clot more resistant to fibrinolysis. This result was independent of any effect on thrombin production. Immunofluorescence analysis of affected human brain areas also showed that both fibrinogen and nitrotyrosinated fibrinogen spread into the brain parenchyma after ischemic stroke. Therefore, we assayed the toxicity of fibrinogen and nitrotyrosinated fibrinogen in a human neuroblastoma cell line. For that purpose we measured the activity of caspase-3, a key enzyme in the apoptotic pathway, and cell survival. We found that nitrotyrosinated fibrinogen induced higher activation of caspase 3. Accordingly, cell survival assays showed a more neurotoxic effect of nitrotyrosinated fibrinogen at all concentrations tested. In summary, nitrotyrosinated fibrinogen would be of pathophysiological interest in ischemic stroke due to both its impact on hemostasis - it impairs thrombolysis, the main target in stroke treatments - and its neurotoxicity that would contribute to the death of the brain tissue surrounding the infarcted area.


Asunto(s)
Apoptosis , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Fibrinógeno/metabolismo , Fibrinólisis , Neuronas/metabolismo , Accidente Cerebrovascular/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/patología , Isquemia Encefálica/patología , Caspasa 3/metabolismo , Línea Celular Tumoral , Activación Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/patología , Tirosina/análogos & derivados , Tirosina/metabolismo
17.
Oxid Med Cell Longev ; 2013: 826143, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23983901

RESUMEN

Ischemic stroke is an acute vascular event that obstructs blood supply to the brain, producing irreversible damage that affects neurons but also glial and brain vessel cells. Immediately after the stroke, the ischemic tissue produces nitric oxide (NO) to recover blood perfusion but also produces superoxide anion. These compounds interact, producing peroxynitrite, which irreversibly nitrates protein tyrosines. The present study measured NO production in a human neuroblastoma (SH-SY5Y), a murine glial (BV2), a human endothelial cell line (HUVEC), and in primary cultures of human cerebral myocytes (HC-VSMCs) after experimental ischemia in vitro. Neuronal, endothelial, and inducible NO synthase (NOS) expression was also studied up to 24 h after ischemia, showing a different time course depending on the NOS type and the cells studied. Finally, we carried out cell viability experiments on SH-SY5Y cells with H2O2, a prooxidant agent, and with a NO donor to mimic ischemic conditions. We found that both compounds were highly toxic when they interacted, producing peroxynitrite. We obtained similar results when all cells were challenged with peroxynitrite. Our data suggest that peroxynitrite induces cell death and is a very harmful agent in brain ischemia.


Asunto(s)
Estrés Oxidativo/efectos de los fármacos , Proteínas/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Tirosina/análogos & derivados , Tirosina/efectos de los fármacos
18.
EMBO Mol Med ; 4(7): 660-73, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22488900

RESUMEN

Inherited familial Alzheimer's disease (AD) is characterized by small increases in the ratio of Aß42 versus Aß40 peptide which is thought to drive the amyloid plaque formation in the brain of these patients. Little is known however whether ageing, the major risk factor for sporadic AD, affects amyloid beta-peptide (Aß) generation as well. Here we demonstrate that the secretion of Aß is enhanced in an in vitro model of neuronal ageing, correlating with an increase in γ-secretase complex formation. Moreover we found that peroxynitrite (ONOO(-)), produced by the reaction of superoxide anion with nitric oxide, promoted the nitrotyrosination of presenilin 1 (PS1), the catalytic subunit of γ-secretase. This was associated with an increased association of the two PS1 fragments, PS1-CTF and PS1-NTF, which constitute the active catalytic centre. Furthermore, we found that peroxynitrite shifted the production of Aß towards Aß(42) and increased the Aß(42) /Aß(40) ratio. Our work identifies nitrosative stress as a potential mechanistic link between ageing and AD.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Senescencia Celular/efectos de los fármacos , Neuronas/metabolismo , Ácido Peroxinitroso/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Dominio Catalítico , Células Cultivadas , Humanos , Ratones , Neuronas/citología , Fragmentos de Péptidos/metabolismo , Presenilina-1/química , Presenilina-1/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Riesgo , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
19.
Aging Cell ; 11(1): 63-72, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22023223

RESUMEN

Several studies suggest that the generation of Aß is highly dependent on the levels of cholesterol within membranes' detergent-resistant microdomains (DRM). Indeed, the ß-amyloid precursor protein (APP) cleaving machinery, namely ß- and γ-secretases, has been shown to be present in DRM and its activity depends on membrane cholesterol levels. Counterintuitive to the localization of the cleavage machinery, the substrate, APP, localizes to membranes' detergent-soluble microdomains enriched in phospholipids (PL), indicating that Aß generation is highly dependent on the capacity of enzyme and substrate to diffuse along the lateral plane of the membrane and therefore on the internal equilibrium of the different lipids of DRM and non-DRM domains. Here, we studied to which extent changes in the content of a main non-DRM lipid might affect the proteolytic processing of APP. As phosphatidylethanolamine (PE) accounts for the majority of PL, we focused on its impact on the regulation of APP proteolysis. In mammalian cells, siRNA-mediated knock-down of PE synthesis resulted in decreased Aß owing to a dual effect: promoted α-secretase cleavage and decreased γ-secretase processing of APP. In vivo, in Drosophila melanogaster, genetic reduction in PL synthesis results in decreased γ-secretase-dependent cleavage of APP. These results suggest that modulation of the membrane-soluble domains could be a valuable alternative to reduce excessive Aß generation.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/biosíntesis , Drosophila melanogaster/metabolismo , Neuronas/metabolismo , Fosfatidiletanolaminas/metabolismo , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Membrana Celular/genética , Membrana Celular/metabolismo , Colesterol/metabolismo , Detergentes/farmacología , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Femenino , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Masculino , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neuronas/citología , Fosfatidiletanolaminas/genética , Proteolisis , ARN Interferente Pequeño/genética , Ratas
20.
J Biol Chem ; 287(2): 1100-11, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22086926

RESUMEN

Clinical, pharmacological, biochemical, and genetic evidence support the notion that alteration of cholesterol homeostasis strongly predisposes to Alzheimer disease (AD). The ATP-binding cassette transporter-2 (Abca2), which plays a role in intracellular sterol trafficking, has been genetically linked to AD. It is unclear how these two processes are related. Here we demonstrate that down-regulation of Abca2 in mammalian cells leads to decreased amyloid-ß (Aß) generation. In vitro studies revealed altered γ-secretase complex formation in Abca2 knock-out cells due to the altered levels, post-translational modification, and subcellular localization of Nicastrin. Reduced Abca2 levels in mammalian cells in vitro, in Drosophila melanogaster and in mice resulted in altered γ-secretase processing of APP, and thus Aß generation, without affecting Notch cleavage.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Drosophila/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Regulación hacia Abajo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Ratones , Proteínas del Tejido Nervioso/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...