Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Infect Genet Evol ; 116: 105536, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048896

RESUMEN

Human papillomavirus type 16 (HPV-16) is the most prevalent HPV type worldwide and in Tunisia and the major carcinogenic HPV type found in cervical precancers and cancers. Previous studies have reported that genetic diversity of HPV16-E6 oncoprotein might be associated with cervical intraepithelial neoplasia progression. In this study we aimed to investigate the prevalence of HPV-16 E6 variants in precancerous lesions in Tunisian population to assess potential correlation with disease severity. Positive HPV cervical samples were obtained from the Laboratory of Anatomy Pathology of Pasteur Institute of Tunis. Cytological study was performed to identify cervical precancerous lesions. HPVs were typed using Reverse Line Hybridization. Only samples with HPV-16 single infection were selected for HP16-E6 genetic diversity investigation. HPV-16 E6 gene amplification was performed by PCR using specific primers and sequenced by Sanger Sequencing. The multiple alignment of generated sequences was performed using MEGAX software. Phylogenetic tree was constructed using Maximum Likehood method. The ternary complex of E6, E6AP and p53 core domain was used to perform in silico point mutations and thermodynamic calculations to assess stability and binding affinity. Genetic analysis of Tunisian E6-HPV16 sequences showed the presence of three lineages: European (A), African (C) and Asian American (D). Interestingly, the EUR variants were identified as the dominant lineage of HPV-16 and HPV-16 E6 350 G (L83V) was the most detected mutation in precancerous lesions. Modelling data showed that African variants induced the largest destabilizing effect on E6 structure and decreasing thereby in the affinity toward E6AP. Therefore, women infected with European variants are associated with low and high intraepithelial lesions. The findings give useful information for personalized decision algorithms of intra-epithelial cervical neoplasia in Tunisian women.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Lesiones Precancerosas , Neoplasias del Cuello Uterino , Femenino , Humanos , Papillomavirus Humano 16/genética , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Filogenia , Polimorfismo Genético , Lesiones Precancerosas/genética , Lesiones Precancerosas/virología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/virología
2.
Pathogens ; 12(11)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38003756

RESUMEN

Early and accurate detection of infectious diseases is a key step for surveillance, epidemiology and control, notably timely disease diagnosis, patient management and follow-up. In this study, we aimed to develop handheld ultra-fast duplex PCR assays coupled to amplicon detection by lateral flow (LF) immunoassay to deliver a rapid and simple molecular diagnostic test for concomitant detection and identification of the main Leishmania parasites encountered in Tunisia. We selected two DNA targets to amplify L. major/L. tropica and L. infantum/L. tropica groups of species DNAs, respectively. We optimized the experimental conditions of a duplex ultra-fast PCR. The amplification is performed using a portable Palm convection PCR machine within 18 min, and the products are detected using an LF cassette within 10 min. The test allows the identification of the infecting species according to the position and number of test lines revealed. Tested on a selection of DNAs of representative Leishmania strains of the three studied species (N = 37), the ultra-fast duplex PCR-LF showed consistent, stable and reproducible results. The analytical limit of detection of the test was 0.4 pg for L. major, 4 pg for L. infantum and 40 pg for L. tropica.

3.
Pathogens ; 12(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37375475

RESUMEN

Leishmania infantum is endemic in Morocco, and it causes both visceral (VL) and cutaneous leishmaniasis (CL). In this study, the multilocus sequence typing (MLST) approach was used to investigate the phylogeny and population structure of Leishmania infantum strains isolated from CL and VL patients and the canine reservoir in different leishmaniasis endemic foci in Morocco. For this purpose, eight loci (pgm, alat, me, fh, g6pd, pgd, gpi and cytb) were amplified in 40 samples, out of which 31 were successfully sequenced. The genetic diversity analysis detected a high degree of intraspecific genetic variability among the studied strains. The phylogenetic and the haplotype analyses showed that most of the strains from the same geographical areas clustered together. The recombination among Leishmania infantum strains was revealed through a splits tree analysis and the number of recombination events. Moreover, the assessment of the gene flow between Leishmania infantum and Leishmania tropica through phylogenetic analysis and haplotype diversity in two endemic foci where the two species were sympatric showed no genetic exchange between the two species.

4.
Diagn Microbiol Infect Dis ; 105(3): 115859, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36543027

RESUMEN

The present study aimed to evaluate the distribution of oncogenic HPVs in Tunisian women diagnosed with ASC-US or LSIL in order to highlight the importance of HPV testing in the management of women with minor cytological lesions. The study involved 213 cervical samples from women aged from 18 to 82 years and diagnosed with ASC-US or LSIL. HPV detection and genotyping was performed by nested PCR followed by reverse Line Blotting. HPV DNA was identified in 161 cases (76.3%). Oncogenic HPV genotypes were detected in 53.1% of cases. The most frequent high-risk genotypes in this study were HPV16 (28.8%) followed by: HPV51 (9.6%), HPV18, HPV31 HPV56 (7.1%) and HPV45 (5.1%). Thus, 24 % of studied women were not infected by HPV and about 47% of infections are without oncogenic HPV. These results highlight the value of HPV testing in the decision algorithm of management of minor abnormalities lesions.


Asunto(s)
Infecciones por Papillomavirus , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Femenino , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Displasia del Cuello del Útero/diagnóstico , Displasia del Cuello del Útero/patología , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/epidemiología , Virus del Papiloma Humano , Infecciones por Papillomavirus/diagnóstico , Infecciones por Papillomavirus/epidemiología , Triaje , Túnez/epidemiología , Papillomaviridae/genética , Genotipo , ADN Viral/genética , ADN Viral/análisis
5.
Viruses ; 14(10)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36298732

RESUMEN

There are limited national population-based studies on HPV genotypes distribution in Tunisia, thus making difficult an assessment of the burden of vaccine-preventable cervical cancer. In this context, we conducted a national survey to determine the HPV prevalence and genotypes distribution and the risk factors for HPV infections in Tunisian women. This is a cross-sectional study performed between December 2012 and December 2014. A liquid-based Pap smear sample was obtained from all women and samples' DNAs were extracted. Only women with betaglobin-positive PCR were further analysed for HPV detection and typing by a nested-PCR of the L1 region followed by next-generation sequencing. A multiple logistic regression model was used for the analysis of associations between the variables. A total of 1517 women were enrolled in this study, and 1229 out of the 1517 cervical samples were positive for the betaglobin control PCR and tested for HPV. Overall HPV infection prevalence was measured to be 7.8% (96/1229), with significant differences between the grand regions, ranging from 2% in the North to 13.1% in Grand Tunis. High-risk HPV genotypes accounted for 5% of the infections. The most prevalent genotypes were HPV 31 (1%), 16 (0.9%), 59 (0.7%). HPV18 was detected only in four cases of the study population. Potential risk factors were living in Grand Tunis region (OR: 7.94 [2.74-22.99]), married status (OR: 2.74 [1.23-6.13]), smoking habit (OR: 2.73 [1.35-5.51]), occupation (OR: 1.81 [1.09-3.01]) and women with multiple sexual partners (OR: 1.91 [1.07-3.39]). These findings underscore the need to evaluate the cost effectiveness of HPV vaccine implementation, contribute to the evidence on the burden of HPV infections, the critical role of sexual behaviour and socioeconomic status, and call for increased support to the preventive program of cervical cancer in Tunisia.


Asunto(s)
Alphapapillomavirus , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , Papillomaviridae/genética , Prevalencia , Estudios Transversales , Túnez/epidemiología , Genotipo , Factores de Riesgo
6.
Molecules ; 27(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36144626

RESUMEN

Previous investigations of the Leishmania infantum eIF4A-like protein (LieIF4A) as a potential drug target delivered cholestanol derivatives inhibitors. Here, we investigated the mode of action of cholesterol derivatives as a novel scaffold structure of LieIF4A inhibitors on the RNA-dependent ATPase activity of LieIF4A and its mammalian ortholog (eIF4AI). We compared their biochemical effects on RNA-dependent ATPase activities of both proteins and investigated if rocaglamide, a known inhibitor of eIF4A, could affect LieIF4A as well. Kinetic measurements were conducted at different concentrations of ATP, of the compound and in the presence of saturating whole yeast RNA concentrations. Kinetic analyses showed different ATP binding affinities for the two enzymes as well as different sensitivities to 7-α-aminocholesterol and rocaglamide. The 7-α-aminocholesterol inhibited LieIF4A with a higher binding affinity relative to cholestanol analogs. Cholesterol, another tested sterol, had no effect on the ATPase activity of LieIF4A or eIF4AI. The 7-α-aminocholesterol demonstrated an anti-Leishmania activity on L. infantum promastigotes. Additionally, docking simulations explained the importance of the double bond between C5 and C6 in 7-α-aminocholesterol and the amino group in the C7 position. In conclusion, Leishmania and mammalian eIF4A proteins appeared to interact differently with effectors, thus making LieIF4A a potential drug against leishmaniases.


Asunto(s)
Factor 4A Eucariótico de Iniciación , Leishmania infantum , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Colestanoles/metabolismo , Colesterol/metabolismo , Factor 4A Eucariótico de Iniciación/química , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Mamíferos/metabolismo , Ratones , Proteínas/metabolismo , ARN/metabolismo , Esteroles/metabolismo , Esteroles/farmacología
7.
Bioinform Biol Insights ; 16: 11779322221090349, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35478992

RESUMEN

Drug discovery (DD) research is a complex field with a high attrition rate. Machine learning (ML) approaches combined to chemoinformatics are of valuable input to this field. We, herein, focused on implementing multiple ML algorithms that shall learn from different molecular fingerprints (FPs) of 65 057 molecules that have been identified as active or inactive against Leishmania major promastigotes. We sought to build a classifier able to predict whether a given molecule has the potential of being anti-leishmanial or not. Using the RDkit library, we calculated 5 molecular FPs of the molecules. Then, we implemented 4 ML algorithms that we trained and tested for their ability to classify the molecules into active/inactive classes based on their chemical structure, encoded by the molecular FPs. Best performers were random forest (RF) and support vector machine (SVM), while atom-pair and topology torsion FPs were the best embedding functions. Both models were further assessed on different stratification levels of the dataset and showed stable performances. At last, we used them to predict the potential of molecules within the Food and Drug Administration (FDA)-approved drugs collection to present anti-Leishmania effects. We ranked these drugs according to their anti-Leishmanial probability and obtained in total seven anti-Leishmania agents, previously described in the literature, within the top 10 of each model. This validates the robustness of the approach, the algorithms, and FPs choices as well as the importance of the dataset size and content. We further engaged these molecules into reverse docking experiments on 3D crystal structures of seven well-studied Leishmania drug targets and could predict the molecular targets for 4 drugs. The results bring novel insights into anti-Leishmania compounds.

8.
Viruses ; 14(3)2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35337031

RESUMEN

Documenting the circulation dynamics of SARS-CoV-2 variants in different regions of the world is crucial for monitoring virus transmission worldwide and contributing to global efforts towards combating the pandemic. Tunisia has experienced several waves of COVID-19 with a significant number of infections and deaths. The present study provides genetic information on the different lineages of SARS-CoV-2 that circulated in Tunisia over 17 months. Lineages were assigned for 1359 samples using whole-genome sequencing, partial S gene sequencing and variant-specific real-time RT-PCR tests. Forty-eight different lineages of SARS-CoV-2 were identified, including variants of concern (VOCs), variants of interest (VOIs) and variants under monitoring (VUMs), particularly Alpha, Beta, Delta, A.27, Zeta and Eta. The first wave, limited to imported and import-related cases, was characterized by a small number of positive samples and lineages. During the second wave, a large number of lineages were detected; the third wave was marked by the predominance of the Alpha VOC, and the fourth wave was characterized by the predominance of the Delta VOC. This study adds new genomic data to the global context of COVID-19, particularly from the North African region, and highlights the importance of the timely molecular characterization of circulating strains.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Genoma Viral , Humanos , Epidemiología Molecular , SARS-CoV-2/genética , Túnez/epidemiología
9.
Parasit Vectors ; 15(1): 12, 2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-34996507

RESUMEN

BACKGROUND: Leishmaniasis is endemic in Tunisia and presents with different clinical forms, caused by the species Leishmania infantum, Leishmania major, and Leishmania tropica. The life cycle of Leishmania is complex and involves several phlebotomine sand fly vectors and mammalian reservoir hosts. The aim of this work is the development and evaluation of a high-resolution melting PCR (PCR-HRM) tool to detect and identify Leishmania parasites in wild and domestic hosts, constituting confirmed (dogs and Meriones rodents) or potential (hedgehogs) reservoirs in Tunisia. METHODS: Using in vitro-cultured Leishmania isolates, PCR-HRM reactions were developed targeting the 7SL RNA and HSP70 genes. Animals were captured or sampled in El Kef Governorate, North West Tunisia. DNA was extracted from the liver, spleen, kidney, and heart from hedgehogs (Atelerix algirus) (n = 3) and rodents (Meriones shawi) (n = 7) and from whole blood of dogs (n = 12) that did not present any symptoms of canine leishmaniasis. In total, 52 DNA samples were processed by PCR-HRM using both pairs of primers. RESULTS: The results showed melting curves enabling discrimination of the three Leishmania species present in Tunisia, and were further confirmed by Sanger sequencing. Application of PCR-HRM assays on reservoir host samples showed that overall among the examined samples, 45 were positive, while seven were negative, with no Leishmania infection. Meriones shawi were found infected with L. major, while dogs were infected with L. infantum. However, co-infections with L. major/L. infantum species were detected in four Meriones specimens and in all tested hedgehogs. In addition, multiple infections with the three Leishmania species were found in one hedgehog specimen. Sequence analyses of PCR-HRM products corroborated the Leishmania species found in analyzed samples. CONCLUSIONS: The results of PCR-HRM assays applied to field specimens further support the possibility of hedgehogs as reservoir hosts of Leishmania. In addition, we showed their usefulness in the diagnosis of canine leishmaniasis, specifically in asymptomatic dogs, which will ensure a better evaluation of infection extent, thus improving elaboration of control programs. This PCR-HRM method is a robust and reliable tool for molecular detection and identification of Leishmania and can be easily implemented in epidemiological surveys in endemic regions.


Asunto(s)
Reservorios de Enfermedades , Leishmania/aislamiento & purificación , Leishmaniasis/parasitología , Animales , Reservorios de Enfermedades/clasificación , Reservorios de Enfermedades/parasitología , Perros , Enfermedades Endémicas , Gerbillinae/parasitología , Erizos/parasitología , Humanos , Leishmania/genética , Leishmania/crecimiento & desarrollo , Leishmania/patogenicidad , Reacción en Cadena de la Polimerasa , Enfermedades de los Roedores/parasitología , Roedores , Temperatura de Transición , Túnez
10.
Front Genet ; 12: 744170, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912370

RESUMEN

Drug discovery and repurposing against COVID-19 is a highly relevant topic with huge efforts dedicated to delivering novel therapeutics targeting SARS-CoV-2. In this context, computer-aided drug discovery is of interest in orienting the early high throughput screenings and in optimizing the hit identification rate. We herein propose a pipeline for Ligand-Based Drug Discovery (LBDD) against SARS-CoV-2. Through an extensive search of the literature and multiple steps of filtering, we integrated information on 2,610 molecules having a validated effect against SARS-CoV and/or SARS-CoV-2. The chemical structures of these molecules were encoded through multiple systems to be readily useful as input to conventional machine learning (ML) algorithms or deep learning (DL) architectures. We assessed the performances of seven ML algorithms and four DL algorithms in achieving molecule classification into two classes: active and inactive. The Random Forests (RF), Graph Convolutional Network (GCN), and Directed Acyclic Graph (DAG) models achieved the best performances. These models were further optimized through hyperparameter tuning and achieved ROC-AUC scores through cross-validation of 85, 83, and 79% for RF, GCN, and DAG models, respectively. An external validation step on the FDA-approved drugs collection revealed a superior potential of DL algorithms to achieve drug repurposing against SARS-CoV-2 based on the dataset herein presented. Namely, GCN and DAG achieved more than 50% of the true positive rate assessed on the confirmed hits of a PubChem bioassay.

11.
Pathogens ; 10(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34451417

RESUMEN

Small wild mammals are an important element in the emergence and transmission of vector-borne pathogens (VBPs). Among these species, hedgehogs have been found to be a reservoir of VBPs and host of arthropod vectors. Surveillance of VBPs in wildlife and their arthropods are crucial in a one health context. We conducted an exploratory study to screen Atelerix algirus hedgehogs and their infesting ticks and fleas for VBPs using a high throughput microfluidic real-time PCR system. Tested biopsies from hedgehogs were found to be naturally infected by Theileria youngi, Hepatozoon sp., Ehrlichia ewingii, Coxiella burnetii, and Candidatus Ehrlichia shimanensis. Similarly, Haemaphysalis erinacei and Rhipicephalus sanguineus tick species were infected by Ehrlichia ewingii, Rickettsia spp., Rickettsia massiliae, Borrelia sp., Coxiella burnetii, Rickettsia lusitaniae and Anaplasma sp. Archaeopsylla erinacei fleas were infected by Rickettsia asembonensis, Coxiella burnetii, and Rickettsia massiliae. Co-infections by two and three pathogens were detected in hedgehogs and infesting ticks and fleas. The microfluidic real-time PCR system enabled us not only to detect new and unexpected pathogens, but also to identify co-infections in hedgehogs, ticks, and fleas. We suggest that hedgehogs may play a reservoir role for VBPs in Tunisia and contribute to maintaining enzootic pathogen cycles via arthropod vectors.

12.
PLoS One ; 16(8): e0255914, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34379683

RESUMEN

The most used methodologies for HPV genotyping in Tunisian studies are based on hybridization that are limited to a restricted number of HPV types and to a lack of specificity and sensitivity for same types. Recently, Next-Generation sequencing (NGS) technology has been efficiently used for HPV genotyping. In this work we designed and validated a sensitive genotyping method based on nested PCR followed by NGS. Eighty-six samples were tested for the validation of an HPV genotyping assay based on Nested-PCR followed by NGS. These include, 43 references plasmids and 43 positive HPV clinical cervical specimens previously evaluated with the conventional genotyping method: Reverse Line Hybridization (RLH). Results of genotyping using NGS were compared to those of RLH. The analytical sensitivity of the NGS assay was 1GE/µl per sample. The NGS allowed the detection of all HPV types presented in references plasmids. On the clinical samples, a total of 19 HPV types were detected versus 14 types using RLH. Besides the identification of more HPV types in multiple infection (6 types for NGS versus 4 for RLH), NGS allowed the identification of HPV types that were not detected by RLH. In addition, the NGS assay detected newly HPV types that were not described in Tunisia so far: HPV81, HPV43, HPV74, and HPV62. The high sensitivity and specificity of NGS for HPV genotyping in addition to the identification of new HPV types may justify the use of such technique to provide with high accuracy the profile of circulating types in epidemiological studies.


Asunto(s)
Cuello del Útero/virología , ADN Viral/análisis , Secuenciación de Nucleótidos de Alto Rendimiento , Papillomaviridae/genética , Infecciones por Papillomavirus/virología , Reacción en Cadena de la Polimerasa , ADN Viral/metabolismo , Femenino , Genotipo , Humanos , Papillomaviridae/aislamiento & purificación , Infecciones por Papillomavirus/patología , Análisis de Secuencia de ADN
13.
Infect Agent Cancer ; 16(1): 52, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34271960

RESUMEN

BACKGROUND: High-risk human papillomavirus (HR-HPV) are responsible for cervical cancer (CC) which represents the second most prevalent gynecological cancer among Tunisian women. Preventive strategies against CC are based on prophylactic vaccines that have not yet been implemented into the national vaccination program of Tunisia. Therefore, the present study aimed to investigate the HPV genotypes distribution in cervical neoplasia in Tunisian women in order to predict the impact of using current HPV vaccines on cancer prevention in Tunisia. METHODS: A total of 200 formalin-fixed paraffin embedded biopsies were collected in our study. DNA was extracted using Qiagen Mini prep kit. DNA quality was controlled by Beta Globin PCR. Only positive samples for Beta Globin test were used. HPV detection was performed by a nested PCR using PYGMY and GP5+/6+ primers. Genotyping was performed by Reverse Line hybridization using 31 probes. RESULTS: The mean age of participants was 38.97 years and 75% were over 30 years. Cervical neoplasia distribution according to age showed that CINII/CINIII was observed among women over 30 years old. All samples were positive for Beta Globin PCR. Overall HPV prevalence in cervical lesions was 83% (166/200). HPV was present in 65% of CINI, 82% of CINII/CINIII and 85% of CC. HR-HPV was statistically significantly associated with cervical intraepithelial neoplasia (p < 10-3). HR-HPV distribution according to lesion grade and cervical cancer showed that HPV16 and HPV18 were present in all lesions. For CINII/CINIII, HPV 35 (37.5%) was the most detected type, followed by HPV18 (33.3%) HPV 45 (28.5%) and HPV 16 (18.9%). HPV 45(57.5%), HPV 18 (53.3%) were the most detected in CC. HPV58, 59, 68 were only detected in CC and associated with HPV45, 18 and HPV16. HPV39, 31, 33, 52, 56 and HPV70 was associated only with CINI. CONCLUSIONS: Our findings can give useful information for vaccine implementation by helping the health policymakers to choose the most appropriate vaccine type in Tunisia.

14.
PLoS Negl Trop Dis ; 15(7): e0009530, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34310607

RESUMEN

BACKGROUND: Dipeptidyl peptidase III (DPPIII) member of M49 peptidase family is a zinc-dependent metallopeptidase that cleaves dipeptides sequentially from the N-terminus of its substrates. In Leishmania, DPPIII, was reported with other peptidases to play a significant role in parasites' growth and survival. In a previous study, we used a coding sequence annotated as DPPIII to develop and evaluate a PCR assay that is specific to dermotropic Old World (OW) Leishmania species. Thus, our objective was to further assess use of this gene for Leishmania species identification and for phylogeny, and thus for diagnostic and molecular epidemiology studies of Old World Leishmania species. METHODOLOGY: Orthologous DDPIII genes were searched in all Leishmania genomes and aligned to design PCR primers and identify relevant restriction enzymes. A PCR assays was developed and seventy-two Leishmania fragment sequences were analyzed using MEGA X genetics software to infer evolution and phylogenetic relationships of studied species and strains. A PCR-RFLP scheme was also designed and tested on 58 OW Leishmania strains belonging to 8 Leishmania species and evaluated on 75 human clinical skin samples. FINDINGS: Sequence analysis showed 478 variable sites (302 being parsimony informative). Test of natural selection (dN-dS) (-0.164, SE = 0.013) inferred a negative selection, characteristic of essential genes, corroborating the DPPIII importance for parasite survival. Inter- and intra-specific genetic diversity was used to develop universal amplification of a 662bp fragment. Sequence analyses and phylogenies confirmed occurrence of 6 clusters congruent to L. major, L. tropica, L. aethiopica, L. arabica, L. turanica, L. tarentolae species, and one to the L. infantum and L. donovani species complex. A PCR-RFLP algorithm for Leishmania species identification was designed using double digestions with HaeIII and KpnI and with SacI and PvuII endonucleases. Overall, this PCR-RFLP yielded distinct profiles for each of the species L. major, L. tropica, L. aethiopica, L. arabica and L. turanica and the L. (Sauroleishmania) L. tarentolae. The species L. donovani, and L. infantum shared the same profile except for strains of Indian origin. When tested on clinical samples, the DPPIII PCR showed sensitivities of 82.22% when compared to direct examination and was able to identify 84.78% of the positive samples. CONCLUSION: The study demonstrates that DPPIII gene is suitable to detect and identify Leishmania species and to complement other molecular methods for leishmaniases diagnosis and epidemiology. Thus, it can contribute to evidence-based disease control and surveillance.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Leishmania/enzimología , Leishmaniasis Cutánea/parasitología , Proteínas Protozoarias/genética , Cartilla de ADN/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Marcadores Genéticos , Humanos , Leishmania/clasificación , Leishmania/genética , Leishmania/aislamiento & purificación , Leishmaniasis Cutánea/epidemiología , Filogenia , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/metabolismo
15.
Infect Genet Evol ; 93: 104932, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34023510

RESUMEN

Cutaneous leishmaniasis (CL) is one of the most neglected tropical diseases, caused by different Leishmania species. Despite its high incidence in Morocco, CL due to Leishmania tropica is poorly understood in terms of its epidemiological status and population structure. In this study, we used multilocus sequence typing (MLST) in order to explore the genetic heterogeneity of L. tropica strains. Samples (N = 48) were collected from CL patients in two localities in Morocco (Foum Jamaa in the Azilal province and Imintanoute in Chichaoua province). PCR-sequencing of 18 strains was carried out for six housekeeping genes (cytb, me, fh, g6pd, pgd and gpi), Genetic diversity indices showed a high population genetic differentiation between and among populations. There was no shared haplotypes between the two localities studied. Our results reveal a considerable degree of differentiation through the relatively high FST value (> 0.4) and remarkable intraspecific polymorphism (S = 29). Imintanoute strains have more polymorphisms (S = 22) than the Foum Jamaa strains despite their small sample size. These results provide crucial background information of epidemiology in Imintanoute which raises questions about animal involvement in L. tropica transmission cycle.


Asunto(s)
Genes Protozoarios , Variación Genética , Leishmania tropica/genética , Adolescente , Adulto , Anciano , Secuencia de Bases , Niño , Preescolar , Femenino , Humanos , Lactante , Leishmaniasis Cutánea/parasitología , Masculino , Persona de Mediana Edad , Marruecos , Tipificación de Secuencias Multilocus , Filogenia , Adulto Joven
16.
Genes (Basel) ; 12(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535521

RESUMEN

DEAD-box RNA helicases are ubiquitous proteins found in all kingdoms of life and that are associated with all processes involving RNA. Their central roles in biology make these proteins potential targets for therapeutic or prophylactic drugs. The Ded1/DDX3 subfamily of DEAD-box proteins is of particular interest because of their important role(s) in translation. In this paper, we identified and aligned the protein sequences of 28 different DEAD-box proteins from the kinetoplast-protozoan parasite Leishmania infantum, which is the cause of the visceral form of leishmaniasis that is often lethal if left untreated, and compared them with the consensus sequence derived from DEAD-box proteins in general, and from the Ded1/DDX3 subfamily in particular, from a wide variety of other organisms. We identified three potential homologs of the Ded1/DDX3 subfamily and the equivalent proteins from the related protozoan parasite Trypanosoma brucei, which is the causative agent of sleeping sickness. We subsequently tested these proteins for their ability to complement a yeast strain deleted for the essential DED1 gene. We found that the DEAD-box proteins from Trypanosomatids are highly divergent from other eukaryotes, and consequently they are suitable targets for protein-specific drugs.


Asunto(s)
ARN Helicasas DEAD-box/genética , Proteínas de Saccharomyces cerevisiae/genética , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/genética , Secuencia de Aminoácidos/genética , Simulación por Computador , Humanos , Leishmania infantum/genética , Leishmania infantum/patogenicidad , Biosíntesis de Proteínas/genética , ARN/genética , Saccharomyces cerevisiae/genética , Trypanosoma brucei brucei/patogenicidad , Tripanosomiasis Africana/parasitología
17.
J Immunol Res ; 2019: 9124326, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31183394

RESUMEN

Vaccination is the most effective tool against infectious diseases. Subunit vaccines are safer compared to live-attenuated vaccines but are less immunogenic and need to be delivered with an adjuvant. Adjuvants are essential for enhancing vaccine potency by improving humoral and cell-mediated immune responses. Only a limited number of adjuvants are licensed for human vaccines, and their mode of action is still not clear. Leishmania eukaryotic initiation factor (LeIF) has been described having a dual role, as a natural adjuvant and as an antigen that possesses advantageous immunomodulatory properties. In this study, we assessed the adjuvant properties of recombinant Leishmania infantum eukaryotic initiation factor (LieIF) through in vitro and in vivo assays. LieIF was intraperitoneally administered in combination with the protein antigen ovalbumin (OVA), and the widely used alum was used as a reference adjuvant. Our in vitro studies using J774A.1 macrophages showed that LieIF induced stimulatory effects as demonstrated by the enhanced surface expression of CD80 and CD86 co-stimulatory molecules and the induced production of the immune mediators NO and MIP-1α. Additionally, LieIF co-administration with OVA in an in vivo murine model induced a proinflammatory environment as demonstrated by the elevated expression of TNF-α, IL-1ß, and NF-κB2 genes in peritoneal exudate cells (PEC). Furthermore, PEC derived from OVA-LieIF-immunized mice exhibited elevated expression of CD80 molecule and production of NO and MIP-1α in culture supernatants. Moreover, LieIF administration in the peritoneum of mice resulted in the recruitment of neutrophils and monocytes at 24 h post-injection. Also, we showed that this immunopotentiating effect of LieIF did not depend on the induction of uric acid danger signal. These findings suggest the potential use of LieIF as adjuvant in new vaccine formulations against different infectious diseases.


Asunto(s)
Adyuvantes Inmunológicos , Factores Eucarióticos de Iniciación/inmunología , Inflamación/inmunología , Leishmania infantum/fisiología , Leishmaniasis Visceral/inmunología , Macrófagos/inmunología , Proteínas Protozoarias/inmunología , Animales , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Factores Eucarióticos de Iniciación/genética , Femenino , Humanos , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos BALB C , Infiltración Neutrófila , Ovalbúmina/inmunología , Proteínas Protozoarias/genética , Factor de Necrosis Tumoral alfa/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-31134162

RESUMEN

Leishmaniases are neglected diseases, caused by intracellular protozoan parasites of the Leishmania (L.) genus. Although the principal host cells of the parasites are macrophages, neutrophils are the first cells rapidly recruited to the site of parasites inoculation, where they play an important role in the early recognition and elimination of the parasites. The nature of early interactions between neutrophils and Leishmania could influence the outcome of infection. Herein we aimed to evaluate whether different Leishmania strains, responsible for distinct clinical manifestations, could influence ex vivo functional activity of neutrophils. Human polymorphonuclear leukocytes were isolated from 14 healthy volunteers and the ex vivo infection of these cells was done with two L. infantum and one L. major strains. Infection parameters were determined and neutrophils activation was assessed by oxidative burst, degranulation, DNA release and apoptosis; cytokine production was measured by a multiplex flow cytometry analysis. Intracellular amastigotes were rescued to determine Leishmania strains survival. The results showed that L. infantum and L. major promastigotes similarly infected the neutrophils. Oxidative burst, neutrophil elastase, myeloperoxidase activity and apoptosis were significantly increased in infected neutrophils but with no differences between strains. The L. infantum-infected neutrophils induced more DNA release than those infected by L. major. Furthermore, Leishmania strains induced high amounts of IL-8 and stimulated the production of IL-1ß, TNF-α, and TGF-ß by human neutrophils. We observed that only one strain promoted IL-6 release by these neutrophils. The production of TNF-α was also differently induced by the parasites strains. All these results demonstrate that L. infantum and L. major strains were able to induce globally a similar ex vivo activation and apoptosis of neutrophils; however, they differentially triggered cytokines release from these cells. In addition, rescue of intracellular parasites indicated different survival rates further emphasizing on the influence of parasite strains within a species on the fate of infection.


Asunto(s)
Leishmania infantum/inmunología , Leishmania major/inmunología , Leishmaniasis/microbiología , Leishmaniasis/parasitología , Neutrófilos/inmunología , Animales , Apoptosis , Citocinas , Modelos Animales de Enfermedad , Interacciones Huésped-Parásitos , Humanos , Elastasa de Leucocito , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Neutrófilos/metabolismo , Estallido Respiratorio , Células TH1
19.
Immunol Lett ; 210: 20-28, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30998957

RESUMEN

We previously showed that recombinant Leishmania infantum eukaryotic initiation factor (LieIF) was able to induce the secretion of cytokines IL-12, IL-10 and TNF-α by human monocytes. In this study, we explored in vitro the potential of LieIF to induce phenotypic maturation and functional differentiation of murine bone-marrow derived dendritic cells (BM-DCs). Moreover, in order to identify potential immunnomodulatory regions of LieIF, eight recombinant overlapping protein fragments covering the whole amino acid sequence of protein, were constructed and assessed in vitro for their ability to induce maturation of BM-DCs. Our data showed that LieIF and some of its recombinant polypeptides were able to induce elevated expression of CD40, CD80 and CD86 co-stimulatory molecules with concurrent IL-12 production. Moreover, we used an in vivo experimental model of cutaneous leishmaniasis consisted of susceptible Leishmania major-infected BALB/c mice and we demonstrated that LieIF-pulsed-BM-DCs adoptively transferred in mice were capable to confer protection against a high dose parasite challenge. This study further describes the immunomodulatory properties of LieIF and its polypeptides bringing relevant information for their exploitation as candidate molecules for vaccine development against leishmaniasis.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Factores de Iniciación de Péptidos/inmunología , Péptidos/inmunología , Proteínas Protozoarias/inmunología , Proteínas Recombinantes/inmunología , Animales , Antígenos de Protozoos/inmunología , Citocinas/metabolismo , Femenino , Inmunización , Ligandos , Ratones , Factores de Iniciación de Péptidos/química , Proteínas Protozoarias/química , Vacunas Antiprotozoos/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Receptores Toll-Like/metabolismo
20.
PLoS Negl Trop Dis ; 13(4): e0007321, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30964864

RESUMEN

BACKGROUND: Leishmania major is an endemic vector-borne disease in Morocco that causes zoonotic cutaneous leishmaniasis (ZCL), especially in arid pre-Saharan regions where its unique vector and reservoir are Phlebotomus papatasi and Meriones shawi, respectively, and may cause epidemics. In late 2017, the Zagora province, an endemic focus for ZCL in southern Morocco, had CL outbreak. The main objective of our investigation was to analyze the epidemiological features of this latest ZCL outbreak. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed epidemiological features of this latest ZCL outbreak. The Regional Delegation of Health, Zagora, recorded 4,402 CL patients between October 2017 and end of March 2018. Our findings showed that 24 municipalities were affected and majority (55.1%) of infected cases belonged to the Tinzouline rural municipality. Majority of patients were females (57.2%). While all age group patients were affected, those aged <10 years were the most affected (42.1%). During this outbreak over 5 days in December 2017, we conducted a survey in Tinzouline and recruited and sampled 114 CL patients to confirm CL diagnosis by parasitological (direct examination and culture) and molecular (ITS1-PCR) methods and identify the etiological agent of infection using ITS1-PCR-RFLP and sequencing. We completed a detailed questionnaire including clinical and epidemiological data for each patient and found 72.8% of patients presenting multiple lesions (≥2), with an average number of lesions of 5.16 ± 0.5. Lesions were more prevalent in the upper limbs, with the most common type being the ulcerocrusted lesion (60.5%). We detected no associations between lesion type and patients' sex or age. CONCLUSIONS/SIGNIFICANCE: Among 114 clinically diagnosed CL patients, we confirmed 90.35% and identified L. major as the species responsible for this outbreak. Self-medication using various products caused superinfection and inflammation of lesions and complicated the diagnosis and treatment. Thus, ZCL remains a major public health problem in the Zagora province, and commitment of all stakeholders is urgently required to implement a sustainable regional control program.


Asunto(s)
Brotes de Enfermedades , Reservorios de Enfermedades/parasitología , Leishmaniasis Cutánea/epidemiología , Zoonosis/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Niño , Preescolar , Femenino , Humanos , Lactante , Leishmania major/genética , Leishmania major/aislamiento & purificación , Leishmaniasis Cutánea/diagnóstico , Masculino , Persona de Mediana Edad , Marruecos/epidemiología , Phlebotomus/parasitología , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Prevalencia , Piel/parasitología , Piel/patología , Encuestas y Cuestionarios , Adulto Joven , Zoonosis/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...