Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Autophagy ; 20(1): 188-201, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37589496

RESUMEN

Macroautophagy/autophagy is a highly-conserved catabolic procss eliminating dysfunctional cellular components and invading pathogens. Autophagy malfunction contributes to disorders such as cancer, neurodegenerative and inflammatory diseases. Understanding autophagy regulation in health and disease has been the focus of the last decades. We previously provided an integrated database for autophagy research, the Autophagy Regulatory Network (ARN). For the last eight years, this resource has been used by thousands of users. Here, we present a new and upgraded resource, AutophagyNet. It builds on the previous database but contains major improvements to address user feedback and novel needs due to the advancement in omics data availability. AutophagyNet contains updated interaction curation and integration of over 280,000 experimentally verified interactions between core autophagy proteins and their protein, transcriptional and post-transcriptional regulators as well as their potential upstream pathway connections. AutophagyNet provides annotations for each core protein about their role: 1) in different types of autophagy (mitophagy, xenophagy, etc.); 2) in distinct stages of autophagy (initiation, expansion, termination, etc.); 3) with subcellular and tissue-specific localization. These annotations can be used to filter the dataset, providing customizable download options tailored to the user's needs. The resource is available in various file formats (e.g. CSV, BioPAX and PSI-MI), and data can be analyzed and visualized directly in Cytoscape. The multi-layered regulation of autophagy can be analyzed by combining AutophagyNet with tissue- or cell type-specific (multi-)omics datasets (e.g. transcriptomic or proteomic data). The resource is publicly accessible at http://autophagynet.org.Abbreviations: ARN: Autophagy Regulatory Network; ATG: autophagy related; BCR: B cell receptor pathway; BECN1: beclin 1; GABARAP: GABA type A receptor-associated protein; IIP: innate immune pathway; LIR: LC3-interacting region; lncRNA: long non-coding RNA; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; miRNA: microRNA; NHR: nuclear hormone receptor; PTM: post-translational modification; RTK: receptor tyrosine kinase; TCR: T cell receptor; TLR: toll like receptor.


Asunto(s)
Autofagia , MicroARNs , Autofagia/fisiología , Proteómica , Beclina-1 , Mitofagia , Transducción de Señal/genética
2.
Front Cell Infect Microbiol ; 12: 834895, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061866

RESUMEN

Macroautophagy is a ubiquitous homeostasis and health-promoting recycling process of eukaryotic cells, targeting misfolded proteins, damaged organelles and intracellular infectious agents. Some intracellular pathogens such as Salmonella enterica serovar Typhimurium hijack this process during pathogenesis. Here we investigate potential protein-protein interactions between host transcription factors and secreted effector proteins of Salmonella and their effect on host gene transcription. A systems-level analysis identified Salmonella effector proteins that had the potential to affect core autophagy gene regulation. The effect of a SPI-1 effector protein, SopE, that was predicted to interact with regulatory proteins of the autophagy process, was investigated to validate our approach. We then confirmed experimentally that SopE can directly bind to SP1, a host transcription factor, which modulates the expression of the autophagy gene MAP1LC3B. We also revealed that SopE might have a double role in the modulation of autophagy: Following initial increase of MAP1LC3B transcription triggered by Salmonella infection, subsequent decrease in MAP1LC3B transcription at 6h post-infection was SopE-dependent. SopE also played a role in modulation of the autophagy flux machinery, in particular MAP1LC3B and p62 autophagy proteins, depending on the level of autophagy already taking place. Upon typical infection of epithelial cells, the autophagic flux is increased. However, when autophagy was chemically induced prior to infection, SopE dampened the autophagic flux. The same was also observed when most of the intracellular Salmonella cells were not associated with the SCV (strain lacking sifA) regardless of the autophagy induction status before infection. We demonstrated how regulatory network analysis can be used to better characterise the impact of pathogenic effector proteins, in this case, Salmonella. This study complements previous work in which we had demonstrated that specific pathogen effectors can affect the autophagy process through direct interaction with autophagy proteins. Here we show that effector proteins can also influence the upstream regulation of the process. Such interdisciplinary studies can increase our understanding of the infection process and point out targets important in intestinal epithelial cell defense.


Asunto(s)
Infecciones por Salmonella , Salmonella typhimurium , Autofagia/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Epiteliales/metabolismo , Humanos , Salmonella typhimurium/genética
3.
Cell ; 185(14): 2395-2397, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803242

RESUMEN

Flaviviruses, such as Dengue and Zika viruses, infect millions of people worldwide using mosquitos as vectors. In this issue of Cell, Zhang et al. reveal how these viruses manipulate the skin microbiome of infected hosts in a way that increases vector recruitment and viral spread. They propose vitamin A as a way to counteract the virus and decrease transmission.


Asunto(s)
Infecciones por Flavivirus , Flavivirus , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Piel , Animales , Culicidae/virología , Dengue , Flavivirus/fisiología , Infecciones por Flavivirus/microbiología , Infecciones por Flavivirus/transmisión , Humanos , Publicaciones Periódicas como Asunto , Piel/metabolismo , Piel/microbiología , Enfermedades Transmitidas por Vectores , Infección por el Virus Zika
4.
J Extracell Vesicles ; 11(1): e12189, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35064769

RESUMEN

The gastrointestinal (GI) tract harbours a complex microbial community, which contributes to its homeostasis. A disrupted microbiome can cause GI-related diseases, including inflammatory bowel disease (IBD), therefore identifying host-microbe interactions is crucial for better understanding gut health. Bacterial extracellular vesicles (BEVs), released into the gut lumen, can cross the mucus layer and access underlying immune cells. To study BEV-host interactions, we examined the influence of BEVs generated by the gut commensal bacterium, Bacteroides thetaiotaomicron, on host immune cells. Single-cell RNA sequencing data and host-microbe protein-protein interaction networks were used to predict the effect of BEVs on dendritic cells, macrophages and monocytes focusing on the Toll-like receptor (TLR) pathway. We identified biological processes affected in each immune cell type and cell-type specific processes including myeloid cell differentiation. TLR pathway analysis highlighted that BEV targets differ among cells and between the same cells in healthy versus disease (ulcerative colitis) conditions. The in silico findings were validated in BEV-monocyte co-cultures demonstrating the requirement for TLR4 and Toll-interleukin-1 receptor domain-containing adaptor protein (TIRAP) in BEV-elicited NF-kB activation. This study demonstrates that both cell-type and health status influence BEV-host communication. The results and the pipeline could facilitate BEV-based therapies for the treatment of IBD.


Asunto(s)
Bacteroides thetaiotaomicron/metabolismo , Vesículas Extracelulares/metabolismo , Microbioma Gastrointestinal/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Interacciones Microbiota-Huesped , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Glicoproteínas de Membrana/antagonistas & inhibidores , Monocitos/inmunología , Monocitos/metabolismo , Mapas de Interacción de Proteínas , Receptores de Interleucina-1/antagonistas & inhibidores , Transducción de Señal , Receptor Toll-Like 4/antagonistas & inhibidores , Receptores Toll-Like/metabolismo
5.
Nucleic Acids Res ; 50(D1): D701-D709, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34634810

RESUMEN

Signaling networks represent the molecular mechanisms controlling a cell's response to various internal or external stimuli. Most currently available signaling databases contain only a part of the complex network of intertwining pathways, leaving out key interactions or processes. Hence, we have developed SignaLink3 (http://signalink.org/), a value-added knowledge-base that provides manually curated data on signaling pathways and integrated data from several types of databases (interaction, regulation, localisation, disease, etc.) for humans, and three major animal model organisms. SignaLink3 contains over 400 000 newly added human protein-protein interactions resulting in a total of 700 000 interactions for Homo sapiens, making it one of the largest integrated signaling network resources. Next to H. sapiens, SignaLink3 is the only current signaling network resource to provide regulatory information for the model species Caenorhabditis elegans and Danio rerio, and the largest resource for Drosophila melanogaster. Compared to previous versions, we have integrated gene expression data as well as subcellular localization of the interactors, therefore uniquely allowing tissue-, or compartment-specific pathway interaction analysis to create more accurate models. Data is freely available for download in widely used formats, including CSV, PSI-MI TAB or SQL.


Asunto(s)
Bases de Datos Genéticas , Redes Reguladoras de Genes/genética , Mapas de Interacción de Proteínas/genética , Transducción de Señal/genética , Animales , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Humanos , Pez Cebra/genética
6.
Cells ; 10(9)2021 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-34571891

RESUMEN

Intercellular communication mediated by cytokines is critical to the development of immune responses, particularly in the context of infectious and inflammatory diseases. By releasing these small molecular weight peptides, the source cells can influence numerous intracellular processes in the target cells, including the secretion of other cytokines downstream. However, there are no readily available bioinformatic resources that can model cytokine-cytokine interactions. In this effort, we built a communication map between major tissues and blood cells that reveals how cytokine-mediated intercellular networks form during homeostatic conditions. We collated the most prevalent cytokines from the literature and assigned the proteins and their corresponding receptors to source tissue and blood cell types based on enriched consensus RNA-Seq data from the Human Protein Atlas database. To assign more confidence to the interactions, we integrated the literature information on cell-cytokine interactions from two systems of immunology databases, immuneXpresso and ImmunoGlobe. From the collated information, we defined two metanetworks: a cell-cell communication network connected by cytokines; and a cytokine-cytokine interaction network depicting the potential ways in which cytokines can affect the activity of each other. Using expression data from disease states, we then applied this resource to reveal perturbations in cytokine-mediated intercellular signalling in inflammatory and infectious diseases (ulcerative colitis and COVID-19, respectively). For ulcerative colitis, with CytokineLink, we demonstrated a significant rewiring of cytokine-mediated intercellular communication between non-inflamed and inflamed colonic tissues. For COVID-19, we were able to identify cell types and cytokine interactions following SARS-CoV-2 infection, highlighting important cytokine interactions that might contribute to severe illness in a subgroup of patients. Such findings have the potential to inform the development of novel, cytokine-targeted therapeutic strategies. CytokineLink is freely available for the scientific community through the NDEx platform and the project github repository.


Asunto(s)
COVID-19/inmunología , Citocinas/metabolismo , Inmunidad , Enfermedades Inflamatorias del Intestino/inmunología , Comunicación Celular , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/patología , Bases de Datos Genéticas , Humanos , Enfermedades Inflamatorias del Intestino/patología , Transducción de Señal
7.
Front Immunol ; 12: 629193, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732251

RESUMEN

Hyper-induction of pro-inflammatory cytokines, also known as a cytokine storm or cytokine release syndrome (CRS), is one of the key aspects of the currently ongoing SARS-CoV-2 pandemic. This process occurs when a large number of innate and adaptive immune cells activate and start producing pro-inflammatory cytokines, establishing an exacerbated feedback loop of inflammation. It is one of the factors contributing to the mortality observed with coronavirus 2019 (COVID-19) for a subgroup of patients. CRS is not unique to the SARS-CoV-2 infection; it was prevalent in most of the major human coronavirus and influenza A subtype outbreaks of the past two decades (H5N1, SARS-CoV, MERS-CoV, and H7N9). With a comprehensive literature search, we collected changing the cytokine levels from patients upon infection with the viral pathogens mentioned above. We analyzed published patient data to highlight the conserved and unique cytokine responses caused by these viruses. Our curation indicates that the cytokine response induced by SARS-CoV-2 is different compared to other CRS-causing respiratory viruses, as SARS-CoV-2 does not always induce specific cytokines like other coronaviruses or influenza do, such as IL-2, IL-10, IL-4, or IL-5. Comparing the collated cytokine responses caused by the analyzed viruses highlights a SARS-CoV-2-specific dysregulation of the type-I interferon (IFN) response and its downstream cytokine signatures. The map of responses gathered in this study could help specialists identify interventions that alleviate CRS in different diseases and evaluate whether they could be used in the COVID-19 cases.


Asunto(s)
COVID-19/inmunología , Síndrome de Liberación de Citoquinas/inmunología , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , SARS-CoV-2/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Índice de Severidad de la Enfermedad , COVID-19/sangre , COVID-19/patología , COVID-19/virología , Síndrome de Liberación de Citoquinas/sangre , Síndrome de Liberación de Citoquinas/virología , Citocinas/sangre , Humanos , Inflamación/inmunología , Gripe Humana/sangre , Gripe Humana/virología , Síndrome Respiratorio Agudo Grave/sangre , Síndrome Respiratorio Agudo Grave/virología
8.
Mol Syst Biol ; 17(3): e9923, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33749993

RESUMEN

Molecular knowledge of biological processes is a cornerstone in omics data analysis. Applied to single-cell data, such analyses provide mechanistic insights into individual cells and their interactions. However, knowledge of intercellular communication is scarce, scattered across resources, and not linked to intracellular processes. To address this gap, we combined over 100 resources covering interactions and roles of proteins in inter- and intracellular signaling, as well as transcriptional and post-transcriptional regulation. We added protein complex information and annotations on function, localization, and role in diseases for each protein. The resource is available for human, and via homology translation for mouse and rat. The data are accessible via OmniPath's web service (https://omnipathdb.org/), a Cytoscape plug-in, and packages in R/Bioconductor and Python, providing access options for computational and experimental scientists. We created workflows with tutorials to facilitate the analysis of cell-cell interactions and affected downstream intracellular signaling processes. OmniPath provides a single access point to knowledge spanning intra- and intercellular processes for data analysis, as we demonstrate in applications studying SARS-CoV-2 infection and ulcerative colitis.


Asunto(s)
COVID-19/metabolismo , Colitis Ulcerosa/metabolismo , Biología Computacional/métodos , Proteínas/metabolismo , Transducción de Señal , Animales , Comunicación Celular , Colitis Ulcerosa/patología , Bases de Datos Factuales , Enzimas/metabolismo , Humanos , Ratones , Procesamiento Proteico-Postraduccional , Proteínas/genética , Ratas , Análisis de la Célula Individual , Programas Informáticos , Flujo de Trabajo
9.
PLoS Comput Biol ; 17(2): e1008685, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33534793

RESUMEN

The SARS-CoV-2 pandemic of 2020 has mobilised scientists around the globe to research all aspects of the coronavirus virus and its infection. For fruitful and rapid investigation of viral pathomechanisms, a collaborative and interdisciplinary approach is required. Therefore, we have developed ViralLink: a systems biology workflow which reconstructs and analyses networks representing the effect of viruses on intracellular signalling. These networks trace the flow of signal from intracellular viral proteins through their human binding proteins and downstream signalling pathways, ending with transcription factors regulating genes differentially expressed upon viral exposure. In this way, the workflow provides a mechanistic insight from previously identified knowledge of virally infected cells. By default, the workflow is set up to analyse the intracellular effects of SARS-CoV-2, requiring only transcriptomics counts data as input from the user: thus, encouraging and enabling rapid multidisciplinary research. However, the wide-ranging applicability and modularity of the workflow facilitates customisation of viral context, a priori interactions and analysis methods. Through a case study of SARS-CoV-2 infected bronchial/tracheal epithelial cells, we evidence the functionality of the workflow and its ability to identify key pathways and proteins in the cellular response to infection. The application of ViralLink to different viral infections in a context specific manner using different available transcriptomics datasets will uncover key mechanisms in viral pathogenesis.


Asunto(s)
COVID-19/metabolismo , Biología Computacional/métodos , Regulación Viral de la Expresión Génica , SARS-CoV-2/patogenicidad , Transducción de Señal , Algoritmos , Bronquios/virología , Análisis por Conglomerados , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Investigación Interdisciplinaria , Pulmón/virología , Modelos Estadísticos , Biología de Sistemas , Transcriptoma , Flujo de Trabajo
10.
Dis Model Mech ; 12(3)2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30814064

RESUMEN

Paneth cells are key epithelial cells that provide an antimicrobial barrier and maintain integrity of the small-intestinal stem cell niche. Paneth cell abnormalities are unfortunately detrimental to gut health and are often associated with digestive pathologies such as Crohn's disease or infections. Similar alterations are observed in individuals with impaired autophagy, a process that recycles cellular components. The direct effect of autophagy impairment on Paneth cells has not been analysed. To investigate this, we generated a mouse model lacking Atg16l1 specifically in intestinal epithelial cells, making these cells impaired in autophagy. Using three-dimensional intestinal organoids enriched for Paneth cells, we compared the proteomic profiles of wild-type and autophagy-impaired organoids. We used an integrated computational approach combining protein-protein interaction networks, autophagy-targeted proteins and functional information to identify the mechanistic link between autophagy impairment and disrupted pathways. Of the 284 altered proteins, 198 (70%) were more abundant in autophagy-impaired organoids, suggesting reduced protein degradation. Interestingly, these differentially abundant proteins comprised 116 proteins (41%) that are predicted targets of the selective autophagy proteins p62, LC3 and ATG16L1. Our integrative analysis revealed autophagy-mediated mechanisms that degrade key proteins in Paneth cell functions, such as exocytosis, apoptosis and DNA damage repair. Transcriptomic profiling of additional organoids confirmed that 90% of the observed changes upon autophagy alteration have effects at the protein level, not on gene expression. We performed further validation experiments showing differential lysozyme secretion, confirming our computationally inferred downregulation of exocytosis. Our observations could explain how protein-level alterations affect Paneth cell homeostatic functions upon autophagy impairment.This article has an associated First Person interview with the joint first authors of the paper.


Asunto(s)
Autofagia , Intestinos/fisiología , Organoides/citología , Organoides/metabolismo , Células de Paneth/metabolismo , Proteómica , Transcriptoma/genética , Animales , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/metabolismo , Células Epiteliales/metabolismo , Exocitosis , Femenino , Masculino , Ratones Endogámicos C57BL , Proteolisis , Reproducibilidad de los Resultados
11.
Front Cell Dev Biol ; 6: 92, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30175097

RESUMEN

Autophagy is the process by which cytoplasmic components are engulfed in double-membraned vesicles before being delivered to the lysosome to be degraded. Defective autophagy has been linked to a vast array of human pathologies. The molecular mechanism of the autophagic machinery is well-described and has been extensively investigated. However, understanding the global organization of the autophagy system and its integration with other cellular processes remains a challenge. To this end, various bioinformatics and network biology approaches have been developed by researchers in the last few years. Recently, large-scale multi-omics approaches (like genomics, transcriptomics, proteomics, lipidomics, and metabolomics) have been developed and carried out specifically focusing on autophagy, and generating multi-scale data on the related components. In this review, we outline recent applications of in silico investigations and big data analyses of the autophagy process in various biological systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...