Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nat Genet ; 56(5): 900-912, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38388848

RESUMEN

Whole chromosome and arm-level copy number alterations occur at high frequencies in tumors, but their selective advantages, if any, are poorly understood. Here, utilizing unbiased whole chromosome genetic screens combined with in vitro evolution to generate arm- and subarm-level events, we iteratively selected the fittest karyotypes from aneuploidized human renal and mammary epithelial cells. Proliferation-based karyotype selection in these epithelial lines modeled tissue-specific tumor aneuploidy patterns in patient cohorts in the absence of driver mutations. Hi-C-based translocation mapping revealed that arm-level events usually emerged in multiples of two via centromeric translocations and occurred more frequently in tetraploids than diploids, contributing to the increased diversity in evolving tetraploid populations. Isogenic clonal lineages enabled elucidation of pro-tumorigenic mechanisms associated with common copy number alterations, revealing Notch signaling potentiation as a driver of 1q gain in breast cancer. We propose that intrinsic, tissue-specific proliferative effects underlie tumor copy number patterns in cancer.


Asunto(s)
Aneuploidia , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Variaciones en el Número de Copia de ADN , Neoplasias/genética , Neoplasias/patología , Translocación Genética , Evolución Molecular , Proliferación Celular/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Especificidad de Órganos/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología
2.
Clin Genitourin Cancer ; 22(2): 558-568.e3, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38342659

RESUMEN

INTRODUCTION/BACKGROUND: Immune checkpoint inhibitors (ICIs) have limited efficacy in prostate cancer (PCa). Better biomarkers are needed to predict responses to ICIs. We sought to demonstrate that a panel-based mutational signature identifies mismatch repair (MMR) deficient (MMRd) PCa and is a biomarker of response to pembrolizumab. PATIENTS AND METHODS: Clinico-genomic data was obtained for 2664 patients with PCa sequenced at Dana-Farber Cancer Institute (DFCI) and Memorial Sloan Kettering (MSK). Clinical outcomes were collected for patients with metastatic castration-resistant PCa (mCRPC) treated with pembrolizumab at DFCI. SigMA was used to characterize tumors as MMRd or MMR proficient (MMRp). The concordance between MMRd with microsatellite instability (MSI-H) was assessed. Radiographic progression-free survival (rPFS) and overall survival (OS) were collected for patients treated with pembrolizumab. Event-time distributions were estimated using Kaplan-Meier methodology. RESULTS: Across both cohorts, 100% (DFCI: 12/12; MSK: 43/43) of MSI-H tumors were MMRd. However, 14% (2/14) and 9.1% (6/66) of MMRd tumors in the DFCI and MSK cohorts respectively were microsatellite stable (MSS), and 26% (17/66) were MSI-indeterminate in the MSK cohort. Among patients treated with pembrolizumab, those with MMRd (n = 5) versus MMRp (n = 14) mCRPC experienced markedly improved rPFS (HR = 0.088, 95% CI: 0.011-0.70; P = .0064) and OS (HR = 0.11, 95% CI: 0.014-0.80; P = .010) from start of treatment. Four patients with MMRd experienced remissions of >= 2.5 years. CONCLUSION: SigMA detects additional cases of MMRd as compared to MSI testing in PCa and identifies patients likely to experience durable response to pembrolizumab.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Síndromes Neoplásicos Hereditarios , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Anticuerpos Monoclonales Humanizados/uso terapéutico , Síndromes Neoplásicos Hereditarios/inducido químicamente , Síndromes Neoplásicos Hereditarios/tratamiento farmacológico
3.
Nat Genet ; 56(3): 541-552, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361034

RESUMEN

Mutational signature analysis is a recent computational approach for interpreting somatic mutations in the genome. Its application to cancer data has enhanced our understanding of mutational forces driving tumorigenesis and demonstrated its potential to inform prognosis and treatment decisions. However, methodological challenges remain for discovering new signatures and assigning proper weights to existing signatures, thereby hindering broader clinical applications. Here we present Mutational Signature Calculator (MuSiCal), a rigorous analytical framework with algorithms that solve major problems in the standard workflow. Our simulation studies demonstrate that MuSiCal outperforms state-of-the-art algorithms for both signature discovery and assignment. By reanalyzing more than 2,700 cancer genomes, we provide an improved catalog of signatures and their assignments, discover nine indel signatures absent in the current catalog, resolve long-standing issues with the ambiguous 'flat' signatures and give insights into signatures with unknown etiologies. We expect MuSiCal and the improved catalog to be a step towards establishing best practices for mutational signature analysis.


Asunto(s)
Música , Neoplasias , Humanos , Neoplasias/genética , Mutación , Carcinogénesis/genética , Mutación INDEL
4.
medRxiv ; 2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38293061

RESUMEN

Despite the overall efficacy of immune checkpoint blockade (ICB) for mismatch repair deficiency (MMRD) across tumor types, a sizable fraction of patients with MMRD still do not respond to ICB. We performed mutational signature analysis of panel sequencing data (n = 95) from MMRD cases treated with ICB. We discover that T>C-rich single base substitution (SBS) signatures-SBS26 and SBS54 from the COSMIC Mutational Signatures catalog-identify MMRD patients with significantly shorter overall survival. Tumors with a high burden of SBS26 show over-expression and enriched mutations of genes involved in double-strand break repair and other DNA repair pathways. They also display chromosomal instability (CIN), likely related to replication fork instability, leading to copy number losses that trigger immune evasion. SBS54 is associated with transcriptional activity and not with CIN, defining a distinct subtype. Consistently, cancer cell lines with a high burden of SBS26 and SBS54 are sensitive to treatments targeting pathways related to their proposed etiology. Together, our analysis offers an explanation for the heterogeneous responses to ICB among MMRD patients and supports an SBS signature-based predictor as a prognostic biomarker for differential ICB response.

5.
Genome Med ; 15(1): 115, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38111063

RESUMEN

Identifying expressed somatic mutations from single-cell RNA sequencing data de novo is challenging but highly valuable. We propose RESA - Recurrently Expressed SNV Analysis, a computational framework to identify expressed somatic mutations from scRNA-seq data. RESA achieves an average precision of 0.77 on three in silico spike-in datasets. In extensive benchmarking against existing methods using 19 datasets, RESA consistently outperforms them. Furthermore, we applied RESA to analyze intratumor mutational heterogeneity in a melanoma drug resistance dataset. By enabling high precision detection of expressed somatic mutations, RESA substantially enhances the reliability of mutational analysis in scRNA-seq. RESA is available at https://github.com/ShenLab-Genomics/RESA .


Asunto(s)
Melanoma , Análisis de la Célula Individual , Humanos , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Mutación , Melanoma/genética , Perfilación de la Expresión Génica/métodos , Análisis por Conglomerados , Programas Informáticos
6.
Clin Cancer Res ; 29(24): 5128-5139, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37773632

RESUMEN

PURPOSE: Leiomyosarcoma (LMS) is an aggressive sarcoma for which standard chemotherapies achieve response rates under 30%. There are no effective targeted therapies against LMS. Most LMS are characterized by chromosomal instability (CIN), resulting in part from TP53 and RB1 co-inactivation and DNA damage repair defects. We sought to identify therapeutic targets that could exacerbate intrinsic CIN and DNA damage in LMS, inducing lethal genotoxicity. EXPERIMENTAL DESIGN: We performed clinical targeted sequencing in 287 LMS and genome-wide loss-of-function screens in 3 patient-derived LMS cell lines, to identify LMS-specific dependencies. We validated candidate targets by biochemical and cell-response assays in vitro and in seven mouse models. RESULTS: Clinical targeted sequencing revealed a high burden of somatic copy-number alterations (median fraction of the genome altered =0.62) and demonstrated homologous recombination deficiency signatures in 35% of LMS. Genome-wide short hairpin RNA screens demonstrated PRKDC (DNA-PKcs) and RPA2 essentiality, consistent with compensatory nonhomologous end joining (NHEJ) hyper-dependence. DNA-PK inhibitor combinations with unconventionally low-dose doxorubicin had synergistic activity in LMS in vitro models. Combination therapy with peposertib and low-dose doxorubicin (standard or liposomal formulations) inhibited growth of 5 of 7 LMS mouse models without toxicity. CONCLUSIONS: Combinations of DNA-PK inhibitors with unconventionally low, sensitizing, doxorubicin dosing showed synergistic effects in LMS in vitro and in vivo models, without discernable toxicity. These findings underscore the relevance of DNA damage repair alterations in LMS pathogenesis and identify dependence on NHEJ as a clinically actionable vulnerability in LMS.


Asunto(s)
Leiomiosarcoma , Animales , Ratones , Humanos , Leiomiosarcoma/tratamiento farmacológico , Leiomiosarcoma/genética , Leiomiosarcoma/patología , Reparación del ADN/genética , Daño del ADN , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , ADN
8.
Nature ; 618(7967): 1024-1032, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37198482

RESUMEN

Focal copy-number amplification is an oncogenic event. Although recent studies have revealed the complex structure1-3 and the evolutionary trajectories4 of oncogene amplicons, their origin remains poorly understood. Here we show that focal amplifications in breast cancer frequently derive from a mechanism-which we term translocation-bridge amplification-involving inter-chromosomal translocations that lead to dicentric chromosome bridge formation and breakage. In 780 breast cancer genomes, we observe that focal amplifications are frequently connected to each other by inter-chromosomal translocations at their boundaries. Subsequent analysis indicates the following model: the oncogene neighbourhood is translocated in G1 creating a dicentric chromosome, the dicentric chromosome is replicated, and as dicentric sister chromosomes segregate during mitosis, a chromosome bridge is formed and then broken, with fragments often being circularized in extrachromosomal DNAs. This model explains the amplifications of key oncogenes, including ERBB2 and CCND1. Recurrent amplification boundaries and rearrangement hotspots correlate with oestrogen receptor binding in breast cancer cells. Experimentally, oestrogen treatment induces DNA double-strand breaks in the oestrogen receptor target regions that are repaired by translocations, suggesting a role of oestrogen in generating the initial translocations. A pan-cancer analysis reveals tissue-specific biases in mechanisms initiating focal amplifications, with the breakage-fusion-bridge cycle prevalent in some and the translocation-bridge amplification in others, probably owing to the different timing of DNA break repair. Our results identify a common mode of oncogene amplification and propose oestrogen as its mechanistic origin in breast cancer.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Amplificación de Genes , Oncogenes , Translocación Genética , Femenino , Humanos , Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Oncogenes/genética , Translocación Genética/genética , Genoma Humano/genética , Roturas del ADN de Doble Cadena , Especificidad de Órganos
9.
NPJ Precis Oncol ; 6(1): 96, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581696

RESUMEN

Homologous recombination DNA-repair deficiency (HRD) is a common driver of genomic instability and confers a therapeutic vulnerability in cancer. The accurate detection of somatic allelic imbalances (AIs) has been limited by methods focused on BRCA1/2 mutations and using mixtures of cancer types. Using pan-cancer data, we revealed distinct patterns of AIs in high-grade serous ovarian cancer (HGSC). We used machine learning and statistics to generate improved criteria to identify HRD in HGSC (ovaHRDscar). ovaHRDscar significantly predicted clinical outcomes in three independent patient cohorts with higher precision than previous methods. Characterization of 98 spatiotemporally distinct metastatic samples revealed low intra-patient variation and indicated the primary tumor as the preferred site for clinical sampling in HGSC. Further, our approach improved the prediction of clinical outcomes in triple-negative breast cancer (tnbcHRDscar), validated in two independent patient cohorts. In conclusion, our tumor-specific, systematic approach has the potential to improve patient selection for HR-targeted therapies.

10.
Clin Cancer Res ; 28(21): 4714-4723, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36048535

RESUMEN

PURPOSE: The identification of patients with homologous recombination deficiency (HRD) beyond BRCA1/2 mutations is an urgent task, as they may benefit from PARP inhibitors. We have previously developed a method to detect mutational signature 3 (Sig3), termed SigMA, associated with HRD from clinical panel sequencing data, that is able to reliably detect HRD from the limited sequencing data derived from gene-focused panel sequencing. EXPERIMENTAL DESIGN: We apply this method to patients from two independent datasets: (i) high-grade serous ovarian cancer and triple-negative breast cancer (TNBC) from a phase Ib trial of the PARP inhibitor olaparib in combination with the PI3K inhibitor buparlisib (BKM120; NCT01623349), and (ii) TNBC patients who received neoadjuvant olaparib in the phase II PETREMAC trial (NCT02624973). RESULTS: We find that Sig3 as detected by SigMA is positively associated with improved progression-free survival and objective responses. In addition, comparison of Sig3 detection in panel and exome-sequencing data from the same patient samples demonstrated highly concordant results and superior performance in comparison with the genomic instability score. CONCLUSIONS: Our analyses demonstrate that HRD can be detected reliably from panel-sequencing data that are obtained as part of routine clinical care, and that this approach can identify patients beyond those with germline BRCA1/2mut who might benefit from PARP inhibitors. Prospective clinical utility testing is warranted.


Asunto(s)
Neoplasias Ováricas , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Fosfatidilinositol 3-Quinasas/genética , Estudios Prospectivos , Proteína BRCA1/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Mutación , Recombinación Homóloga , Proteína BRCA2/genética
11.
Nat Rev Genet ; 23(5): 298-314, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34880424

RESUMEN

Distilling biologically meaningful information from cancer genome sequencing data requires comprehensive identification of somatic alterations using rigorous computational methods. As the amount and complexity of sequencing data have increased, so has the number of tools for analysing them. Here, we describe the main steps involved in the bioinformatic analysis of cancer genomes, review key algorithmic developments and highlight popular tools and emerging technologies. These tools include those that identify point mutations, copy number alterations, structural variations and mutational signatures in cancer genomes. We also discuss issues in experimental design, the strengths and limitations of sequencing modalities and methodological challenges for the future.


Asunto(s)
Neoplasias , Mapeo Cromosómico , Biología Computacional , Variaciones en el Número de Copia de ADN , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Neoplasias/genética
12.
Nat Commun ; 12(1): 1808, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753749

RESUMEN

Mutational activation of KRAS promotes the initiation and progression of cancers, especially in the colorectum, pancreas, lung, and blood plasma, with varying prevalence of specific activating missense mutations. Although epidemiological studies connect specific alleles to clinical outcomes, the mechanisms underlying the distinct clinical characteristics of mutant KRAS alleles are unclear. Here, we analyze 13,492 samples from these four tumor types to examine allele- and tissue-specific genetic properties associated with oncogenic KRAS mutations. The prevalence of known mutagenic mechanisms partially explains the observed spectrum of KRAS activating mutations. However, there are substantial differences between the observed and predicted frequencies for many alleles, suggesting that biological selection underlies the tissue-specific frequencies of mutant alleles. Consistent with experimental studies that have identified distinct signaling properties associated with each mutant form of KRAS, our genetic analysis reveals that each KRAS allele is associated with a distinct tissue-specific comutation network. Moreover, we identify tissue-specific genetic dependencies associated with specific mutant KRAS alleles. Overall, this analysis demonstrates that the genetic interactions of oncogenic KRAS mutations are allele- and tissue-specific, underscoring the complexity that drives their clinical consequences.


Asunto(s)
Redes Reguladoras de Genes , Mutación , Neoplasias/genética , Especificidad de Órganos/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Alelos , Regulación Neoplásica de la Expresión Génica , Frecuencia de los Genes , Humanos
14.
Nat Neurosci ; 24(2): 176-185, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33432195

RESUMEN

We characterize the landscape of somatic mutations-mutations occurring after fertilization-in the human brain using ultra-deep (~250×) whole-genome sequencing of prefrontal cortex from 59 donors with autism spectrum disorder (ASD) and 15 control donors. We observe a mean of 26 somatic single-nucleotide variants per brain present in ≥4% of cells, with enrichment of mutations in coding and putative regulatory regions. Our analysis reveals that the first cell division after fertilization produces ~3.4 mutations, followed by 2-3 mutations in subsequent generations. This suggests that a typical individual possesses ~80 somatic single-nucleotide variants present in ≥2% of cells-comparable to the number of de novo germline mutations per generation-with about half of individuals having at least one potentially function-altering somatic mutation somewhere in the cortex. ASD brains show an excess of somatic mutations in neural enhancer sequences compared with controls, suggesting that mosaic enhancer mutations may contribute to ASD risk.


Asunto(s)
Trastorno del Espectro Autista/patología , Corteza Prefrontal/patología , División Celular/genética , Cromatina/genética , Desarrollo Embrionario/genética , Epigénesis Genética , Exones , Femenino , Redes Reguladoras de Genes/genética , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Mutación de Línea Germinal/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Polimorfismo de Nucleótido Simple , Embarazo , Secuenciación Completa del Genoma
15.
Cancer Res ; 81(10): 2774-2787, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33514515

RESUMEN

Homologous recombination (HR)-deficient cancers are sensitive to poly-ADP ribose polymerase inhibitors (PARPi), which have shown clinical efficacy in the treatment of high-grade serous cancers (HGSC). However, the majority of patients will relapse, and acquired PARPi resistance is emerging as a pressing clinical problem. Here we generated seven single-cell clones with acquired PARPi resistance derived from a PARPi-sensitive TP53 -/- and BRCA1 -/- epithelial cell line generated using CRISPR/Cas9. These clones showed diverse resistance mechanisms, and some clones presented with multiple mechanisms of resistance at the same time. Genomic analysis of the clones revealed unique transcriptional and mutational profiles and increased genomic instability in comparison with a PARPi-sensitive cell line. Clonal evolutionary analyses suggested that acquired PARPi resistance arose via clonal selection from an intrinsically unstable and heterogenous cell population in the sensitive cell line, which contained preexisting drug-tolerant cells. Similarly, clonal and spatial heterogeneity in tumor biopsies from a clinical patient with BRCA1-mutant HGSC with acquired PARPi resistance was observed. In an imaging-based drug screening, the clones showed heterogenous responses to targeted therapeutic agents, indicating that not all PARPi-resistant clones can be targeted with just one therapy. Furthermore, PARPi-resistant clones showed mechanism-dependent vulnerabilities to the selected agents, demonstrating that a deeper understanding on the mechanisms of resistance could lead to improved targeting and biomarkers for HGSC with acquired PARPi resistance. SIGNIFICANCE: This study shows that BRCA1-deficient cells can give rise to multiple genomically and functionally heterogenous PARPi-resistant clones, which are associated with various vulnerabilities that can be targeted in a mechanism-specific manner.


Asunto(s)
Proteína BRCA1/fisiología , Evolución Clonal , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteína p53 Supresora de Tumor/fisiología , Animales , Apoptosis , Proliferación Celular , Femenino , Inestabilidad Genómica , Recombinación Homóloga , Humanos , Ratones , Ratones Noqueados , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Transcriptoma , Células Tumorales Cultivadas
18.
Nat Commun ; 11(1): 1459, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32193378

RESUMEN

Combined PARP and immune checkpoint inhibition has yielded encouraging results in ovarian cancer, but predictive biomarkers are lacking. We performed immunogenomic profiling and highly multiplexed single-cell imaging on tumor samples from patients enrolled in a Phase I/II trial of niraparib and pembrolizumab in ovarian cancer (NCT02657889). We identify two determinants of response; mutational signature 3 reflecting defective homologous recombination DNA repair, and positive immune score as a surrogate of interferon-primed exhausted CD8 + T-cells in the tumor microenvironment. Presence of one or both features associates with an improved outcome while concurrent absence yields no responses. Single-cell spatial analysis reveals prominent interactions of exhausted CD8 + T-cells and PD-L1 + macrophages and PD-L1 + tumor cells as mechanistic determinants of response. Furthermore, spatial analysis of two extreme responders shows differential clustering of exhausted CD8 + T-cells with PD-L1 + macrophages in the first, and exhausted CD8 + T-cells with cancer cells harboring genomic PD-L1 and PD-L2 amplification in the second.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Antígeno B7-H1/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Análisis Mutacional de ADN , Monitoreo de Drogas/métodos , Femenino , Amplificación de Genes , Humanos , Indazoles/farmacología , Indazoles/uso terapéutico , Interferones/inmunología , Interferones/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Ovario/patología , Piperidinas/farmacología , Piperidinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Reparación del ADN por Recombinación/genética , Análisis de la Célula Individual , Resultado del Tratamiento , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
19.
J Clin Oncol ; 37(30): 2786-2794, 2019 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-31461377

RESUMEN

PURPOSE: Despite the tissue-agnostic approval of pembrolizumab in mismatch repair deficient (MMRD) solid tumors, important unanswered questions remain about the role of immune checkpoint blockade in mismatch repair-proficient (MMRP) and -deficient endometrial cancer (EC). METHODS: This phase II study evaluated the PD-L1 inhibitor avelumab in two cohorts of patients with EC: (1) MMRD/POLE (polymerase ε) cohort, as defined by immunohistochemical (IHC) loss of expression of one or more mismatch repair (MMR) proteins and/or documented mutation in the exonuclease domain of POLE; and (2) MMRP cohort with normal IHC expression of all MMR proteins. Coprimary end points were objective response (OR) and progression-free survival at 6 months (PFS6). Avelumab 10 mg/kg intravenously was administered every 2 weeks until progression or unacceptable toxicity. RESULTS: Thirty-three patients were enrolled. No patient with POLE-mutated tumor was enrolled in the MMRD cohort, and all MMRP tumors were not POLE-mutated. The MMRP cohort was closed at the first stage because of futility: Only one of 16 patients exhibited both OR and PFS6 responses. The MMRD cohort met the predefined primary end point of four ORs after accrual of only 17 patients; of 15 patients who initiated avelumab, four exhibited OR (one complete response, three partial responses; OR rate, 26.7%; 95% CI, 7.8% to 55.1%) and six (including all four ORs) PFS6 responses (PFS6, 40.0%; 95% CI, 16.3% to 66.7%), four of which are ongoing as of data cutoff date. Responses were observed in the absence of PD-L1 expression. IHC captured all cases of MMRD subsequently determined by polymerase chain reaction or genomically via targeted sequencing. CONCLUSION: Avelumab exhibited promising activity in MMRD EC regardless of PD-L1 status. IHC for MMR assessment is a useful tool for patient selection. The activity of avelumab in MMRP/non-POLE-mutated ECs was low.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Reparación de la Incompatibilidad de ADN/genética , Neoplasias Endometriales/tratamiento farmacológico , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Estudios de Cohortes , Neoplasias Endometriales/genética , Femenino , Humanos , Supervivencia sin Progresión
20.
Nat Genet ; 51(5): 912-919, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30988514

RESUMEN

Mutations in BRCA1 and/or BRCA2 (BRCA1/2) are the most common indication of deficiency in the homologous recombination (HR) DNA repair pathway. However, recent genome-wide analyses have shown that the same pattern of mutations found in BRCA1/2-mutant tumors is also present in several other tumors. Here, we present a new computational tool called Signature Multivariate Analysis (SigMA), which can be used to accurately detect the mutational signature associated with HR deficiency from targeted gene panels. Whereas previous methods require whole-genome or whole-exome data, our method detects the HR-deficiency signature even from low mutation counts, by using a likelihood-based measure combined with machine-learning techniques. Cell lines that we identify as HR deficient show a significant response to poly (ADP-ribose) polymerase (PARP) inhibitors; patients with ovarian cancer whom we found to be HR deficient show a significantly longer overall survival with platinum regimens. By enabling panel-based identification of mutational signatures, our method substantially increases the number of patients that may be considered for treatments targeting HR deficiency.


Asunto(s)
Recombinación Homóloga , Mutación , Neoplasias/genética , Algoritmos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Simulación por Computador , ADN de Neoplasias/genética , Femenino , Genes BRCA1 , Genes BRCA2 , Humanos , Funciones de Verosimilitud , Aprendizaje Automático , Análisis Multivariante , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Compuestos de Platino/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Reparación del ADN por Recombinación , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...