Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 903661, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755685

RESUMEN

The introduction of Lupinus mutabilis (Andean lupin) in Europe will provide a new source of protein and oil for plant-based diets and biomass for bio-based products, while contributing to the improvement of marginal soils. This study evaluates for the first time the phenotypic variability of a large panel of L. mutabilis accessions both in their native environment and over two cropping conditions in Europe (winter crop in the Mediterranean region and summer crop in North-Central Europe), paving the way for the selection of accessions adapted to specific environments. The panel of 225 accessions included both germplasm pools from the Andean region and breeding lines from Europe. Notably, we reported higher grain yield in Mediterranean winter-cropping conditions (18 g/plant) than in the native region (9 g/plant). Instead, North European summer-cropping conditions appear more suitable for biomass production (up to 2 kg/plant). The phenotypic evaluation of 16 agronomical traits revealed significant variation in the panel. Principal component analyses pointed out flowering time, yield, and architecture-related traits as the main factors explaining variation between accessions. The Peruvian material stands out among the top-yielding accessions in Europe, characterized by early lines with high grain yield (e.g., LIB065, LIB072, and LIB155). Bolivian and Ecuadorian materials appear more valuable for the selection of genotypes for Andean conditions and for biomass production in Europe. We also observed that flowering time in the different environments is influenced by temperature accumulation. Within the panel, it is possible to identify both early and late genotypes, characterized by different thermal thresholds (600°C-700°C and 1,000-1,200°C GDD, respectively). Indications on top-yielding and early/late accessions, heritability of morpho-physiological traits, and their associations with grain yield are reported and remain largely environmental specific, underlining the importance of selecting useful genetic resources for specific environments. Altogether, these results suggest that the studied panel holds the genetic potential for the adaptation of L. mutabilis to Europe and provide the basis for initiating a breeding program based on exploiting the variation described herein.

2.
Front Plant Sci ; 13: 1099293, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684793

RESUMEN

Establishing Lupinus mutabilis as a protein and oil crop requires improved varieties adapted to EU climates. The genetic regulation of strategic breeding traits, including plant architecture, growing cycle length and yield, is unknown. This study aimed to identify associations between 16 669 single nucleotide polymorphisms (SNPs) and 9 agronomic traits on a panel of 223 L. mutabilis accessions, grown in four environments, by applying a genome wide association study (GWAS). Seven environment-specific QTLs linked to vegetative yield, plant height, pods number and flowering time, were identified as major effect QTLs, being able to capture 6 to 20% of the phenotypic variation observed in these traits. Furthermore, two QTLs across environments were identified for flowering time on chromosome 8. The genes FAF, GAMYB and LNK, regulating major pathways involved in flowering and growth habit, as well as GA30X1, BIM1, Dr1, HDA15, HAT3, interacting with these pathways in response to hormonal and environmental cues, were prosed as candidate genes. These results are pivotal to accelerate the development of L. mutabilis varieties adapted to European cropping conditions by using marker-assisted selection (MAS), as well as to provide a framework for further functional studies on plant development and phenology in this species.

3.
Front Plant Sci ; 10: 1385, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31737013

RESUMEN

Protein crops have gained increasing interest in recent years, as a transition towards plant-protein based diets appears pivotal to ensure global food security and preserve the environment. The Andean species Lupinus mutabilis emerges as an ideal protein crop with great potential for Europe and other regions with temperate climates. This species is characterized by oil and protein content similar to soybean and is highly valued for its adaptability to colder climates and low input agriculture on marginal land. However, its introduction outside the Andes has yet to take off. To date, L. mutabilis remains an under-studied crop, lacking high yield, early maturity and a consistent breeding history. This review paper identifies L. mutabilis limitations and potential uses, and suggests the main breeding targets for further improvement of this crop. It also highlights the potential of new molecular tools and available germplasm resources that can now be used to establish L. mutabilis as a viable protein crop.

4.
Front Plant Sci ; 10: 959, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31402925

RESUMEN

The growing demands for sustainable fibers have stimulated the study of genetic diversity in the quality of hemp fiber (Cannabis sativa L.). Nevertheless, the lack of high-throughput phenotyping methods that are suited for the analysis of hemp fiber, hampers the analysis of many accessions, and consequently the breeding for this complex trait. In the present report, we developed and optimized the throughput of five methods to study the diversity in hemp fiber quality including cell wall extraction, biochemical composition of cell wall polysaccharides, quantification of lignin, quantification of crystalline polysaccharides and morphology of the stems. Six hemp accessions contrasting for cell wall properties were used to assess the throughput and suitability of these methods for genetic studies. The methods presented revealed to be highly repeatable, with low coefficients of variation between technical replicates. With these methods we were able to detect significant phenotypic variation in cell wall composition and stem morphology between the six accessions. In addition, the throughput of the methods has been upgraded to a level that enables their use for phenotyping cell wall traits in breeding programs. The cell wall extraction was optimized to extract enough material for the complete characterization of the cell wall of hemp while reducing the time for the entire analysis. The throughput of the stem morphological analysis was improved by decreasing the timing of fixation, infiltration, and embedding of mature and dry hemp stems. Notwithstanding, our methods already have the potential to phenotype large number of accessions in a relatively short period of time. Our methods will enable exploration of genetic diversity of fiber quality and will contribute to the development of new hemp varieties with advanced quality of fibers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...