Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mutagenesis ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38736258

RESUMEN

DNA ligase (LIG) I and IIIα finalize base excision repair (BER) by sealing a nick product after nucleotide insertion by DNA polymerase (pol) ß at the downstream steps. We previously demonstrated that a functional interplay between polß and BER ligases is critical for efficient repair, and polß mismatch or oxidized nucleotide insertions confound final ligation step. Yet, how targeting downstream enzymes with small molecule inhibitors could affect this coordination remains unknown. Here, we report that DNA ligase inhibitors, L67 and L82-G17, slightly enhance hypersensitivity to oxidative stress-inducing agent, KBrO3, in polß+/+ cells more than polß-/- null cells. We showed less efficient ligation after polß nucleotide insertions in the presence of the DNA ligase inhibitors. Furthermore, the mutations at the ligase inhibitor binding sites (G448, R451, A455) of LIG1 significantly affect nick DNA binding affinity and nick sealing efficiency. Finally, our results demonstrated that the BER ligases seal a gap repair intermediate by the effect of polß inhibitor that diminishes gap filling activity. Overall, our results contribute to understand how the BER inhibitors against downstream enzymes, polß, LIG1, and LIGIIIα, could impact the efficiency of gap filling and subsequent nick sealing at the final steps leading to the formation of deleterious repair intermediates.

2.
J Biol Chem ; 300(5): 107216, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38522520

RESUMEN

Human DNA ligase 1 (LIG1) is the main replicative ligase that seals Okazaki fragments during nuclear replication and finalizes DNA repair pathways by joining DNA ends of the broken strand breaks in the three steps of the ligation reaction. LIG1 can tolerate the RNA strand upstream of the nick, yet an atomic insight into the sugar discrimination mechanism by LIG1 against a ribonucleotide at the 3'-terminus of nick DNA is unknown. Here, we determined X-ray structures of LIG1/3'-RNA-DNA hybrids and captured the ligase during pre- and post-step 3 the ligation reaction. Furthermore, the overlays of 3'-rA:T and 3'-rG:C step 3 structures with step 2 structures of canonical 3'-dA:T and 3'-dG:C uncover a network of LIG1/DNA interactions through Asp570 and Arg871 side chains with 2'-OH of the ribose at nick showing a final phosphodiester bond formation and the other ligase active site residues surrounding the AMP site. Finally, we demonstrated that LIG1 can ligate the nick DNA substrates with pre-inserted 3'-ribonucleotides as efficiently as Watson-Crick base-paired ends in vitro. Together, our findings uncover a novel atomic insight into a lack of sugar discrimination by LIG1 and the impact of improper sugar on the nick sealing of ribonucleotides at the last step of DNA replication and repair.

3.
RSC Med Chem ; 15(3): 937-962, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38516586

RESUMEN

DNA polymerase ß (Polß) is crucial for the base excision repair (BER) pathway of DNA damage repair and is an attractive target for suppressing tumorigenesis as well as chemotherapeutic intervention of cancer. In this study, a unique strategy of scaffold-hopping-based molecular editing of a bioactive agent NSC-666719 was investigated, which led to the development of new molecular motifs with Polß inhibitory activity. NSC compound and its analogs (two series) were prepared, focusing on pharmacophore-based molecular diversity. Most compounds showed higher activities than the parent NSC-666719 and exhibited effects on apoptosis. The inhibitory activity of Polß was evaluated in both in vitro reconstituted and in vivo intact cell systems. Compound 10e demonstrated significant Polß interaction and inhibition characteristics, including direct, non-covalent, reversible, and comparable binding affinity. The investigated approach is useful, and the discovered novel analogs have a high potential for developing as anticancer therapeutics.

4.
Nucleic Acids Res ; 52(7): 3810-3822, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38366780

RESUMEN

Base excision repair (BER) involves the tightly coordinated function of DNA polymerase ß (polß) and DNA ligase I (LIG1) at the downstream steps. Our previous studies emphasize that defective substrate-product channeling, from gap filling by polß to nick sealing by LIG1, can lead to interruptions in repair pathway coordination. Yet, the molecular determinants that dictate accurate BER remains largely unknown. Here, we demonstrate that a lack of gap filling by polß leads to faulty repair events and the formation of deleterious DNA intermediates. We dissect how ribonucleotide challenge and cancer-associated mutations could adversely impact the ability of polß to efficiently fill the one nucleotide gap repair intermediate which subsequently results in gap ligation by LIG1, leading to the formation of single-nucleotide deletion products. Moreover, we demonstrate that LIG1 is not capable of discriminating against nick DNA containing a 3'-ribonucleotide, regardless of base-pairing potential or damage. Finally, AP-Endonuclease 1 (APE1) shows distinct substrate specificity for the exonuclease removal of 3'-mismatched bases and ribonucleotides from nick repair intermediate. Overall, our results reveal that unfilled gaps result in impaired coordination between polß and LIG1, defining a possible type of mutagenic event at the downstream steps where APE1 could provide a proofreading role to maintain BER efficiency.


Asunto(s)
ADN Ligasa (ATP) , ADN Polimerasa beta , Reparación del ADN , ADN Polimerasa beta/metabolismo , ADN Polimerasa beta/genética , ADN Ligasa (ATP)/metabolismo , ADN Ligasa (ATP)/genética , Humanos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN/metabolismo , ADN/genética , Daño del ADN , ADN Ligasas/metabolismo , ADN Ligasas/genética , Reparación por Escisión
5.
J Mol Biol ; 436(4): 168410, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38135179

RESUMEN

Base excision repair (BER) requires a coordination from gap filling by DNA polymerase (pol) ß to subsequent nick sealing by DNA ligase (LIG) IIIα at downstream steps of the repair pathway. X-ray cross-complementing protein 1 (XRCC1), a non-enzymatic scaffolding protein, forms repair complexes with polß and LIGIIIα. Yet, the impact of the polß mutations that affect XRCC1 interaction and protein stability on the repair pathway coordination during nick sealing by LIGIIIα remains unknown. Our results show that the polß colon cancer-associated variant T304 exhibits a reduced interaction with XRCC1 and the mutations in the interaction interface of V303 loop (L301R/V303R/V306R) and at the lysine residues (K206A/K244A) that prevent ubiquitin-mediated degradation of the protein exhibit a diminished repair protein complex formation with XRCC1. Furthermore, we demonstrate no significant effect on gap and nick DNA binding affinity of wild-type polß by these mutations. Finally, our results reveal that XRCC1 leads to an efficient channeling of nick repair products after nucleotide incorporation by polß variants to LIGIIIα, which is compromised by the L301R/V303R/V306R and K206A/K244A mutations. Overall, our findings provide insight into how the mutations in the polß/XRCC1 interface and the regions affecting protein stability could dictate accurate BER pathway coordination at the downstream steps involving nick sealing by LIGIIIα.


Asunto(s)
Roturas del ADN de Cadena Simple , ADN Ligasa (ATP) , ADN Polimerasa beta , Reparación por Escisión , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , ADN Ligasa (ATP)/química , ADN Polimerasa beta/química , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/química , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Humanos , Unión Proteica
6.
Res Sq ; 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37090517

RESUMEN

ATP-dependent DNA ligases catalyze phosphodiester bond formation in the conserved three-step chemical reaction of nick sealing. Human DNA ligase I (LIG1) finalizes almost all DNA repair pathways following DNA polymerase-mediated nucleotide insertion. We previously reported that LIG1 discriminates mismatches depending on the architecture of the 3'-terminus at a nick, however the contribution of conserved active site residues to faithful ligation remains unknown. Here, we comprehensively dissect the nick DNA substrate specificity of LIG1 active site mutants carrying Ala(A) and Leu(L) substitutions at Phe(F)635 and Phe(F)F872 residues and show completely abolished ligation of nick DNA substrates with all 12 non-canonical mismatches. LIG1EE/AA structures of F635A and F872A mutants in complex with nick DNA containing A:C and G:T mismatches demonstrate the importance of DNA end rigidity, as well as uncover a shift in a flexible loop near 5'-end of the nick, which causes an increased barrier to adenylate transfer from LIG1 to the 5'-end of the nick. Furthermore, LIG1EE/AA/8oxoG:A structures of both mutants demonstrated that F635 and F872 play critical roles during steps 1 or 2 of the ligation reaction depending on the position of the active site residue near the DNA ends. Overall, our study contributes towards a better understanding of the substrate discrimination mechanism of LIG1 against mutagenic repair intermediates with mismatched or damaged ends and reveals the importance of conserved ligase active site residues to maintain ligation fidelity.

7.
bioRxiv ; 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36993234

RESUMEN

ATP-dependent DNA ligases catalyze phosphodiester bond formation in the conserved three-step chemical reaction of nick sealing. Human DNA ligase I (LIG1) finalizes almost all DNA repair pathways following DNA polymerase-mediated nucleotide insertion. We previously reported that LIG1 discriminates mismatches depending on the architecture of the 3'-terminus at a nick, however the contribution of conserved active site residues to faithful ligation remains unknown. Here, we comprehensively dissect the nick DNA substrate specificity of LIG1 active site mutants carrying Ala(A) and Leu(L) substitutions at Phe(F)635 and Phe(F)F872 residues and show completely abolished ligation of nick DNA substrates with all 12 non-canonical mismatches. LIG1 EE/AA structures of F635A and F872A mutants in complex with nick DNA containing A:C and G:T mismatches demonstrate the importance of DNA end rigidity, as well as uncover a shift in a flexible loop near 5'-end of the nick, which causes an increased barrier to adenylate transfer from LIG1 to the 5'-end of the nick. Furthermore, LIG1 EE/AA /8oxoG:A structures of both mutants demonstrated that F635 and F872 play critical roles during steps 1 or 2 of the ligation reaction depending on the position of the active site residue near the DNA ends. Overall, our study contributes towards a better understanding of the substrate discrimination mechanism of LIG1 against mutagenic repair intermediates with mismatched or damaged ends and reveals the importance of conserved ligase active site residues to maintain ligation fidelity.

8.
Nat Commun ; 13(1): 3860, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790757

RESUMEN

DNA ligase I (LIG1) catalyzes the ligation of the nick repair intermediate after gap filling by DNA polymerase (pol) ß during downstream steps of the base excision repair (BER) pathway. However, how LIG1 discriminates against the mutagenic 3'-mismatches incorporated by polß at atomic resolution remains undefined. Here, we determine the X-ray structures of LIG1/nick DNA complexes with G:T and A:C mismatches and uncover the ligase strategies that favor or deter the ligation of base substitution errors. Our structures reveal that the LIG1 active site can accommodate a G:T mismatch in the wobble conformation, where an adenylate (AMP) is transferred to the 5'-phosphate of a nick (DNA-AMP), while it stays in the LIG1-AMP intermediate during the initial step of the ligation reaction in the presence of an A:C mismatch at the 3'-strand. Moreover, we show mutagenic ligation and aberrant nick sealing of dG:T and dA:C mismatches, respectively. Finally, we demonstrate that AP-endonuclease 1 (APE1), as a compensatory proofreading enzyme, removes the mismatched bases and interacts with LIG1 at the final BER steps. Our overall findings provide the features of accurate versus mutagenic outcomes coordinated by a multiprotein complex including polß, LIG1, and APE1 to maintain efficient repair.


Asunto(s)
Reparación del ADN , Mutágenos , Adenosina Monofosfato , ADN/metabolismo , Mutagénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...