Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(29): e2401420121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38995966

RESUMEN

Cerebral (Aß) plaque and (pTau) tangle deposition are hallmarks of Alzheimer's disease (AD), yet are insufficient to confer complete AD-like neurodegeneration experimentally. Factors acting upstream of Aß/pTau in AD remain unknown, but their identification could enable earlier diagnosis and more effective treatments. T cell abnormalities are emerging AD hallmarks, and CD8 T cells were recently found to mediate neurodegeneration downstream of tangle deposition in hereditary neurodegeneration models. The precise impact of T cells downstream of Aß/pTau, however, appears to vary depending on the animal model. Our prior work suggested that antigen-specific memory CD8 T ("hiT") cells act upstream of Aß/pTau after brain injury. Here, we examine whether hiT cells influence sporadic AD-like pathophysiology upstream of Aß/pTau. Examining neuropathology, gene expression, and behavior in our hiT mouse model we show that CD8 T cells induce plaque and tangle-like deposition, modulate AD-related genes, and ultimately result in progressive neurodegeneration with both gross and fine features of sporadic human AD. T cells required Perforin to initiate this pathophysiology, and IFNγ for most gene expression changes and progression to more widespread neurodegenerative disease. Analogous antigen-specific memory CD8 T cells were significantly elevated in the brains of human AD patients, and their loss from blood corresponded to sporadic AD and related cognitive decline better than plasma pTau-217, a promising AD biomarker candidate. We identify an age-related factor acting upstream of Aß/pTau to initiate AD-like pathophysiology, the mechanisms promoting its pathogenicity, and its relevance to human sporadic AD.


Asunto(s)
Enfermedad de Alzheimer , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Animales , Linfocitos T CD8-positivos/inmunología , Ratones , Humanos , Placa Amiloide/patología , Placa Amiloide/inmunología , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Encéfalo/patología , Encéfalo/inmunología , Masculino , Interferón gamma/metabolismo , Interferón gamma/inmunología , Envejecimiento/inmunología , Memoria Inmunológica , Células T de Memoria/inmunología , Perforina/metabolismo , Perforina/genética , Femenino
2.
bioRxiv ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38328072

RESUMEN

Cerebral (Aß) plaque and (pTau) tangle deposition are hallmarks of Alzheimer's disease (AD), yet are insufficient to confer complete AD-like neurodegeneration experimentally. Factors acting upstream of Aß/pTau in AD remain unknown, but their identification could enable earlier diagnosis and more effective treatments. T cell abnormalities are emerging AD hallmarks, and CD8 T cells were recently found to mediate neurodegeneration downstream of tangle deposition in hereditary neurodegeneration models. The precise impact of T cells downstream of Aß/fibrillar pTau, however, appears to vary depending on the animal model used. Our prior work suggested that antigen-specific memory CD8 T (" hi T") cells act upstream of Aß/pTau after brain injury. Here we examine whether hi T cells influence sporadic AD-like pathophysiology upstream of Aß/pTau. Examining neuropathology, gene expression, and behavior in our hi T mouse model we show that CD8 T cells induce plaque and tangle-like deposition, modulate AD-related genes, and ultimately result in progressive neurodegeneration with both gross and fine features of sporadic human AD. T cells required Perforin to initiate this pathophysiology, and IFNγ for most gene expression changes and progression to more widespread neurodegenerative disease. Analogous antigen-specific memory CD8 T cells were significantly elevated in the brains of human AD patients, and their loss from blood corresponded to sporadic AD and related cognitive decline better than plasma pTau-217, a promising AD biomarker candidate. Our work is the first to identify an age-related factor acting upstream of Aß/pTau to initiate AD-like pathophysiology, the mechanisms promoting its pathogenicity, and its relevance to human sporadic AD. Significance Statement: This study changes our view of Alzheimer's Disease (AD) initiation and progression. Mutations promoting cerebral beta-amyloid (Aß) deposition guarantee rare genetic forms of AD. Thus, the prevailing hypothesis has been that Aß is central to initiation and progression of all AD, despite contrary animal and patient evidence. We show that age-related T cells generate neurodegeneration with compelling features of AD in mice, with distinct T cell functions required for pathological initiation and neurodegenerative progression. Knowledge from these mice was applied to successfully predict previously unknown features of human AD and generate novel tools for its clinical management.

3.
Oncogene ; 42(25): 2088-2098, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37161052

RESUMEN

The promise of adaptive cancer immunotherapy in treating highly malignant tumors such as glioblastoma multiforme (GBM) can only be realized through expanding its benefits to more patients. Alleviating various modes of immune suppression has so far failed to achieve such expansion, but exploiting endogenous immune enhancers among mutated cancer genes could represent a more direct approach to immunotherapy improvement. We found that Isocitrate Dehydrogenase-1 (IDH1), which is commonly mutated in gliomas, enhances glioma vaccine efficacy in mice and discerns long from short survivors after vaccine therapy in GBM patients. Extracellular IDH1 directly enhanced T cell responses to multiple tumor antigens, and prolonged experimental glioma cell lysis. Moreover, IDH1 specifically bound to and exhibited sialidase activity against CD8. By contrast, mutant IDH1R132H lacked sialidase activity, delayed killing in glioma cells, and decreased host survival after immunotherapy. Overall, our findings identify IDH1 as an immunotherapeutic enhancer that mediates the known T cell-enhancing reaction of CD8 desialylation. This uncovers a new axis for immunotherapeutic improvement in GBM and other cancers, reveals novel physiological and molecular functions of IDH1, and hints at an unexpectedly direct link between lytic T cell function and metabolic activity in target cells.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Ratones , Animales , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ácido N-Acetilneuramínico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Neuraminidasa , Glioma/genética , Glioma/terapia , Glioma/metabolismo , Glioblastoma/genética , Glioblastoma/terapia , Linfocitos T CD8-positivos/metabolismo , Inmunoterapia , Mutación
4.
J Exp Clin Cancer Res ; 41(1): 232, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35883104

RESUMEN

BACKGROUND: Little is known about the role of global DNA methylation in recurrence and chemoresistance of high grade serous ovarian cancer (HGSOC). METHODS: We performed whole genome bisulfite sequencing and transcriptome sequencing in 62 primary and recurrent tumors from 28 patients with stage III/IV HGSOC, of which 11 patients carried germline, pathogenic BRCA1 and/or BRCA2 mutations. RESULTS: Landscapes of genome-wide methylation (on average 24.2 million CpGs per tumor) and transcriptomes in primary and recurrent tumors showed extensive heterogeneity between patients but were highly preserved in tumors from the same patient. We identified significant differences in the burden of differentially methylated regions (DMRs) in tumors from BRCA1/2 compared to non-BRCA1/2 carriers (mean 659 DMRs and 388 DMRs in paired comparisons respectively). We identified overexpression of immune pathways in BRCA1/2 carriers compared to non-carriers, implicating an increased immune response in improved survival (P = 0.006) in these BRCA1/2 carriers. CONCLUSION: These findings indicate methylome and gene expression programs established in the primary tumor are conserved throughout disease progression, even after extensive chemotherapy treatment, and that changes in methylation and gene expression are unlikely to serve as drivers for chemoresistance in HGSOC.


Asunto(s)
Metilación de ADN , Neoplasias Ováricas , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Transcriptoma
5.
Cancer Res ; 80(13): 2722-2736, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32332020

RESUMEN

Gastrointestinal adenocarcinomas (GIAC) of the tubular gastrointestinal (GI) tract including esophagus, stomach, colon, and rectum comprise most GI cancers and share a spectrum of genomic features. However, the unified epigenomic changes specific to GIAC are poorly characterized. Using 907 GIAC samples from The Cancer Genome Atlas, we applied mathematical algorithms to large-scale DNA methylome and transcriptome profiles to reconstruct transcription factor (TF) networks and identify a list of functionally hyperactive master regulator (MR) TF shared across different GIAC. The top candidate HNF4A exhibited prominent genomic and epigenomic activation in a GIAC-specific manner. A complex interplay between the HNF4A promoter and three distal enhancer elements was coordinated by GIAC-specific MRTF including ELF3, GATA4, GATA6, and KLF5. HNF4A also self-regulated its own promoter and enhancers. Functionally, HNF4A promoted cancer proliferation and survival by transcriptional activation of many downstream targets, including HNF1A and factors of interleukin signaling, in a lineage-specific manner. Overall, our study provides new insights into the GIAC-specific gene regulatory networks and identifies potential therapeutic strategies against these common cancers. SIGNIFICANCE: These findings show that GIAC-specific master regulatory transcription factors control HNF4A via three distal enhancers to promote GIAC cell proliferation and survival. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/13/2722/F1.large.jpg.


Asunto(s)
Adenocarcinoma/patología , Biomarcadores de Tumor/metabolismo , Epigenómica , Neoplasias Gastrointestinales/patología , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 4 del Hepatocito/metabolismo , Factores de Transcripción/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/metabolismo , Redes Reguladoras de Genes , Genómica , Factor Nuclear 4 del Hepatocito/genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Pronóstico , Regiones Promotoras Genéticas , Tasa de Supervivencia , Factores de Transcripción/genética , Transcriptoma , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Gut ; 69(4): 630-640, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31409603

RESUMEN

OBJECTIVE: While oesophageal squamous cell carcinoma remains infrequent in Western populations, the incidence of oesophageal adenocarcinoma (EAC) has increased sixfold to eightfold over the past four decades. We aimed to characterise oesophageal cancer-specific and subtypes-specific gene regulation patterns and their upstream transcription factors (TFs). DESIGN: To identify regulatory elements, we profiled fresh-frozen oesophageal normal samples, tumours and cell lines with chromatin immunoprecipitation sequencing (ChIP-Seq). Mathematical modelling was performed to establish (super)-enhancers landscapes and interconnected transcriptional circuitry formed by master TFs. Coregulation and cooperation between master TFs were investigated by ChIP-Seq, circularised chromosome conformation capture sequencing and luciferase assay. Biological functions of candidate factors were evaluated both in vitro and in vivo. RESULTS: We found widespread and pervasive alterations of the (super)-enhancer reservoir in both subtypes of oesophageal cancer, leading to transcriptional activation of a myriad of novel oncogenes and signalling pathways, some of which may be exploited pharmacologically (eg, leukemia inhibitory factor (LIF) pathway). Focusing on EAC, we bioinformatically reconstructed and functionally validated an interconnected circuitry formed by four master TFs-ELF3, KLF5, GATA6 and EHF-which promoted each other's expression by interacting with each super-enhancer. Downstream, these master TFs occupied almost all EAC super-enhancers and cooperatively orchestrated EAC transcriptome. Each TF within the transcriptional circuitry was highly and specifically expressed in EAC and functionally promoted EAC cell proliferation and survival. CONCLUSIONS: By establishing cancer-specific and subtype-specific features of the EAC epigenome, our findings promise to transform understanding of the transcriptional dysregulation and addiction of EAC, while providing molecular clues to develop novel therapeutic modalities against this malignancy.


Asunto(s)
Adenocarcinoma/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Redes Reguladoras de Genes/fisiología , Factores de Transcripción/genética , Adenocarcinoma/patología , Estudios de Casos y Controles , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Factor de Transcripción GATA6/genética , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Proteínas Proto-Oncogénicas c-ets/genética
7.
Bioinformatics ; 35(11): 1974-1977, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30364927

RESUMEN

MOTIVATION: DNA methylation has been used to identify functional changes at transcriptional enhancers and other cis-regulatory modules (CRMs) in tumors and other disease tissues. Our R/Bioconductor package ELMER (Enhancer Linking by Methylation/Expression Relationships) provides a systematic approach that reconstructs altered gene regulatory networks (GRNs) by combining enhancer methylation and gene expression data derived from the same sample set. RESULTS: We present a completely revised version 2 of ELMER that provides numerous new features including an optional web-based interface and a new Supervised Analysis mode to use pre-defined sample groupings. We show that Supervised mode significantly increases statistical power and identifies additional GRNs and associated Master Regulators, such as SOX11 and KLF5 in Basal-like breast cancer. AVAILABILITY AND IMPLEMENTATION: ELMER v.2 is available as an R/Bioconductor package at http://bioconductor.org/packages/ELMER/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Redes Reguladoras de Genes , Transcriptoma , Metilación de ADN , Programas Informáticos
8.
Sci Rep ; 8(1): 6294, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29662153

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

9.
Sci Rep ; 8(1): 4505, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540744

RESUMEN

Interstitial cystitis (IC) is a chronic urinary tract disease that is characterized by unpleasant sensations, such as persistent pelvic pain, in the absence of infection or other identifiable causes. We previously performed comprehensive metabolomics profiling of urine samples from IC patients using nuclear magnetic resonance and gas-chromatography/mass spectrometry and found that urinary α-oxoglutarate (α-OG), was significantly elevated. α-OG, a tricarboxylic acid (TCA) cycle intermediate, reportedly functions to suppress the proliferation of immortalized normal human bladder epithelial cells. Here, we identified AT-rich interactive domain 1 A (ARID1A), a key chromatin remodeler, as being hypomethylated and upregulated by α-OG treatment. This was done through EPIC DNA methylation profiling and subsequent biochemical approaches, including quantitative RT-PCR and western blot analyses. Furthermore, we found that α-OG almost completely suppresses ten-eleven translocation (TET) activity, but does not affect DNA methyltransferase (DNMT) activity. Altogether, our studies reveal the potential role of α-OG in epigenetic remodeling through its effects on ARID1A and TET expression in the bladder. This may provide a new possible therapeutic strategy in treating IC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA