Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 30(4): 628-35, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19932606

RESUMEN

Char residues produced in the co-pyrolysis of different wastes (plastics, pine biomass and used tyres) were characterized using chemical and toxicity assays. One part of the solid chars was submitted to extraction with dichloromethane (DCM) in order to reduce the toxicity of the char residues by removing organic contaminants. The different volatility fractions present in the extracted char (Char A) and in the raw char (Char B) were determined by progressive weight loss combustion. A selected group of heavy metals (Cd, Pb, Zn, Cu, Hg and As) was determined in both chars. The chars were subjected to the leaching test ISO/TS 21268 - 2, 2007 and the resulting eluates were further characterized by determining a group of inorganic parameters (pH, conductivity, Cd, Pb, Zn, Cu, Hg and As contents) and the concentrations of several organic contaminants (volatile aromatic hydrocarbons and alkyl phenols). An ecotoxicological characterization was also performed by using the bio-indicator Vibrio fischeri. The chemical and ecotoxicological results were analyzed according to the Council Decision 2003/33/CE and the criteria on the evaluation methods of waste ecotoxicity (CEMWE). The results obtained in this work indicated that the extraction with DCM is an effective method for the removal of organic contaminants of high to medium volatility from pyrolysis solid residues, thus decreasing their toxicity potential. Zn can be leached from the chars even after the DCM extraction treatment and can contribute to the ecotoxicity of the eluates obtained from chars. Both chars (treated and non treated with DCM) were classified as hazardous and ecotoxic wastes.


Asunto(s)
Aliivibrio fischeri/efectos de los fármacos , Ecotoxicología/métodos , Calor , Incineración , Eliminación de Residuos , Residuos/efectos adversos , Residuos/análisis , Aliivibrio fischeri/crecimiento & desarrollo , Aliivibrio fischeri/metabolismo , Animales , Biomasa , Metales Pesados/análisis , Metales Pesados/toxicidad , Cloruro de Metileno/análisis , Cloruro de Metileno/química , Compuestos Orgánicos/análisis , Compuestos Orgánicos/toxicidad , Pinus , Plásticos , Goma , Pruebas de Toxicidad
2.
Waste Manag ; 29(5): 1760-5, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19131234

RESUMEN

This paper presents the results of the study of a combustible fraction of automotive shredder residues (CASRs) and the corresponding ashes generated by combustion on a fluidized bed pilot with the aim to understand the influence of thermal treatment regarding properties for final disposal, such as landfilling. The chemical composition was evaluated and the leachability behaviour of ashes and CASR was investigated using the three more commonly used tests: the European Standard EN 12457, the US TCLP-EPA 1311 and the Dutch availability test EA NEN 7371. Different results were obtained depending on the specific conditions of the methods employed. It was found that both the CASR and the ashes contained large amounts of toxic metals and other undesirable elements, such as Cl and S. For the CASR, in addition to the leachability of organic matter above the limit set for hazardous materials, the release of heavy metals, either under alkaline and acidic conditions was significant, revealing the serious risks associated to the landfilling practices still being undertaken worldwide. Release of organic matter from ashes was insignificant, but solubility of sulphates increased and chlorides exceed the hazardous limits in the case of fly ashes. Toxic metals were found to leach from the ashes only under acidic conditions, except Pb and Cu which also leached from finer ashes at alkaline pH. Cr also leached from ashes at alkaline pH values. Both the Dutch availability and TCLP revealed much higher leaching intensities than the European Standard due to the acidity of leachants. However, it was found that ashes may be more resistant to acidification because they exhibit much higher acid neutralization capacity (ANC) than the untreated CASR. The study undertaken shows that thermal valorisation of the combustible fraction of ASR may avoid the risks associated with their landfilling; however, care has to be taken with the ashes because they also behave as hazardous residues. Although, the mass reduction provided by thermal treatment may make landfilling less expensive, a more profitable reutilization of the ashes should be developed.


Asunto(s)
Automóviles , Carbono/química , Sustancias Peligrosas/análisis , Incineración , Material Particulado/química , Eliminación de Residuos/métodos , Residuos , Contaminantes Químicos del Agua/análisis , Ceniza del Carbón , Eliminación de Residuos/instrumentación
3.
J Hazard Mater ; 166(1): 309-17, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19118946

RESUMEN

A mixture of 70% (w/w) pine biomass and 30% (w/w) plastics (mixture of polypropylene, polyethylene, and polystyrene) was subjected to pyrolysis at 400 degrees C, for 15 min, with an initial pressure of 40 MPa. Part of the solid residue produced was subjected to extraction with dichloromethane (DCM). The extracted residue (residue A) and raw residue (residue B) were analyzed by weight loss combustion and submitted to the leaching test ISO/TS 21268-2 using two different leachants: DCM (0.2%, v/v) and calcium chloride (0.001 mol/L). The concentrations of the heavy metals Cd, Cr, Ni, Zn, Pb and Cu were determined in the eluates and in the two residues. The eluates were further characterized by determining their pH and the concentrations of benzene, toluene, ethylbenzene and xylenes (BTEX). The presence of other organic contaminants in the eluates was qualitatively evaluated by gas chromatography, coupled with mass spectrometry. An ecotoxicological characterization was also performed by using the bio-indicator Vibrio fischeri. The chemical and ecotoxicological results were analyzed according to the French proposal of Criteria on the Evaluation Methods of Waste Ecotoxicity (CEMWE). Residue A was not considered to be ecotoxic by the ecotoxicological criterion (EC(50) (30 min) >or=10%), but it was considered to be ecotoxic by the chemical criterion (Ni>or=0.5mg/L). Residue B was considered to be ecotoxic by the ecotoxicological criterion: EC(50) (30 min)

Asunto(s)
Ecotoxicología/métodos , Pinus/toxicidad , Plásticos/toxicidad , Eliminación de Residuos/métodos , Aliivibrio fischeri , Biomasa , Contaminantes Ambientales/análisis , Contaminantes Ambientales/toxicidad , Cromatografía de Gases y Espectrometría de Masas , Residuos Peligrosos/análisis , Calor , Metales Pesados/análisis , Compuestos Orgánicos/análisis , Pinus/química , Plásticos/química , Pruebas de Toxicidad
4.
J Hazard Mater ; 147(1-2): 175-83, 2007 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-17261348

RESUMEN

In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub-products of such type of thermal processes.


Asunto(s)
Carbono/análisis , Monitoreo del Ambiente/métodos , Metales/análisis , Material Particulado/análisis , Investigación , Aguas del Alcantarillado/química , Aliivibrio fischeri , Animales , Carbono/toxicidad , Ceniza del Carbón , Daphnia , Francia , Regulación Gubernamental , Metales/toxicidad , Material Particulado/toxicidad , Portugal
5.
Waste Manag ; 23(9): 859-70, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14583249

RESUMEN

Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FBC aiming at the characterization of ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges, suggesting that there could be opportunities for their further use. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out and the amount of unburned carbon leaving the combustor but captured in cyclone was large enough to ensure substantial retention of mercury at low temperatures, hence could contribute to an improvement of the mercury release which still remains an issue of great concern to resolve during combustion of waste materials.


Asunto(s)
Metales Pesados/análisis , Eliminación de Residuos/métodos , Aguas del Alcantarillado/química , Carbón Mineral , Monitoreo del Ambiente , Incineración , Temperatura
6.
Bioresour Technol ; 88(1): 27-32, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12573560

RESUMEN

Biomass gasification was used to produce activated carbon on a pilot-scale fluidised-bed gasifier. The feedstock included both biomass alone and biomass mixed with coal and coal/granulated plastic wastes. This paper reports the results obtained from four different runs undertaken under various conditions of fuel supply, different ratios of steam/air for the gasification and temperature. These conditions were selected because they led to a significant amount of unconverted chars produced during gasification (from 0.72 to 1.4 kg) which then served as raw material for the production of activated carbon whilst the amount of gas obtained was also high enough for its potential use for different end-use applications. From the analysis of the results obtained, it can be concluded that a reasonable porosity development (mainly in the area of narrow micropores) was obtained by gasifying unblended pine wastes with steam for 4 h, producing about 1.4 kg of good-quality activated carbon (micropore volume of 0.263 cm(3)/g). In other runs, chars with a reduced microporosity development (i.e. 0.180 cm(3)/g) were obtained, however, they could be used as a proper starting material for the chemically activated carbon production.


Asunto(s)
Fuentes de Energía Bioeléctrica , Reactores Biológicos , Carbono/metabolismo , Biomasa , Carbón Mineral , Gases , Plásticos , Porosidad , Eliminación de Residuos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA