Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Structure ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39293443

RESUMEN

Recent studies have demonstrated BamA, the central component of the ß-barrel assembly machinery (BAM), as an important therapeutic target to combat infections caused by Acinetobacter baumannii and other Gram-negative pathogens. Homology modeling indicates BamA in A. baumannii consists of five polypeptide transport-associated (POTRA) domains and a ß-barrel membrane domain. We characterized the POTRA domains of BamA from A. baumannii in solution using size-exclusion chromatography small angle X-ray scattering (SEC-SAXS) analysis and determined crystal structures in two conformational states that are drastically different than those previously observed in BamA from other bacteria, indicating that the POTRA domains are even more conformationally dynamic than has been observed previously. Molecular dynamics simulations of the POTRA domains from A. baumannii and Escherichia coli allowed us to identify key structural features that contribute to the observed novel states. Together, these studies expand on our current understanding of the conformational plasticity within BamA across differing bacterial species.

2.
ACS Omega ; 9(36): 37843-37855, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39281922

RESUMEN

In patients with von-Hippel Lindau (VHL) disease, hypoxia-independent accumulation of HIF-2α leads to increased transcriptional activity of HIF-2α:ARNT that drives cancers such as renal cell carcinoma. Belzutifan, a recently FDA-approved drug, is designed to prevent the transcriptional activity of HIF-2α:ARNT, thereby overcoming the consequences of its unnatural accumulation in VHL-dependent cancers. Emerging evidence suggests that the naturally occurring variant G323E located in the HIF-2α drug binding pocket prevents inhibitory activity of belzutifan analogs, though the mechanism of inhibition remains unclear. Interestingly, proximal phosphorylation at neighboring T324, previously shown to regulate HIF-2 protein interactions, has also been proposed to affect HIF-2 drug binding. Here, we used molecular dynamics (MD) simulations to understand and compare the molecular-level effects of G323E and phospho-T324 (pT324) on the belzutifan bound-HIF-2α:ARNT complex. We find that both G323E and pT324 increase structural flexibility within the drug binding site and reduce the apparent binding affinity for belzutifan. Whereas the effects of G323E are concentrated in the binding pocket Fα helix within the HIF-2α PAS-B domain, pT324 decreased the belzutifan binding affinity and stabilized the HIF-2 heterodimer through an alternate mechanism involving polar interactions between the HIF-2α PAS-B and PAS-A domains. Further analysis via ensemble machine learning uncovered important and distinct interchain residue interactions modified by G323E and pT324. These findings reveal a molecular mechanism of G323E-induced drug resistance and suggest that pT324 may also affect the efficacy of HIF-2 drug binding interactions via allosteric effects.

3.
mBio ; : e0218324, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212407

RESUMEN

Infections caused by Mycobacterium spp. are very challenging to treat, and multidrug-resistant strains rapidly spread in human populations. Major contributing factors include the unique physiological features of these bacteria, drug efflux, and the low permeability barrier of their outer membrane. Here, we focus on MmpL3 from Mycobacterium tuberculosis, an essential inner membrane transporter of the resistance-nodulation-division superfamily required for the translocation of mycolic acids in the form of trehalose monomycolates (TMM) from the cytoplasm or plasma membrane to the periplasm or outer membrane. The MmpL3-dependent transport of TMM is essential for the growth of M. tuberculosis in vitro, inside macrophages, and in M. tuberculosis-infected mice. MmpL3 is also a validated target for several recently identified anti-mycobacterial agents. In this study, we reconstituted the lipid transport activity of the purified MmpL3 using a two-lipid vesicle system and established the ability of MmpL3 to actively extract phospholipids from the outer leaflet of a lipid bilayer. In contrast, we found that MmpL3 lacks the ability to translocate the same phospholipid substrate across the plasma membrane indicating that it is not an energy-dependent flippase. The lipid extraction activity was modulated by substitutions in critical charged and polar residues of the periplasmic substrate-binding pocket of MmpL3, coupled to the proton transfer activity of MmpL3 and inhibited by a small molecule inhibitor SQ109. Based on the results, we propose a mechanism of allosteric coupling wherein substrate translocation by MmpL3 is coupled to the energy provided by the downhill transfer of protons. The reconstituted activities will facilitate understanding the mechanism of MmpL3-dependent transport of lipids and the discovery of new therapeutic options for Mycobacterium spp. infections.IMPORTANCEMmpL3 from Mycobacterium tuberculosis is an essential transporter involved in the assembly of the mycobacterial outer membrane. It is also an important target in undergoing efforts to discover new anti-tuberculosis drugs effective against multidrug-resistant strains spreading in human populations. The recent breakthrough structural studies uncovered features of MmpL3 that suggested a possible lipid transport mechanism. In this study, we reconstituted and characterized the lipid transport activity of MmpL3 and demonstrated that this activity is blocked by MmpL3 inhibitors and substrate mimics. We further uncovered the mechanism of how the binding of a substrate in the periplasmic domain is communicated to the transmembrane proton relay of MmpL3. The uncovered mechanism and the developed assays provide new opportunities for mechanistic analyses of MmpL3 function and its inhibition.

4.
Biophys J ; 123(13): 1846-1856, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824390

RESUMEN

Reactions that occur within the lipid membrane involve, at minimum, ternary complexes among the enzyme, substrate, and lipid. For many systems, the impact of the lipid in regulating activity or oligomerization state is poorly understood. Here, we used small-angle neutron scattering (SANS) to structurally characterize an intramembrane aspartyl protease (IAP), a class of membrane-bound enzymes that use membrane-embedded aspartate residues to hydrolyze transmembrane segments of biologically relevant substrates. We focused on an IAP ortholog from the halophilic archaeon Haloferax volcanii (HvoIAP). HvoIAP purified in n-dodecyl-ß-D-maltoside (DDM) fractionates on size-exclusion chromatography (SEC) as two fractions. We show that, in DDM, the smaller SEC fraction is consistent with a compact HvoIAP monomer. Molecular dynamics flexible fitting conducted on an AlphaFold2-generated monomer produces a model in which loops are compact alongside the membrane-embedded helices. In contrast, SANS data collected on the second SEC fraction indicate an oligomer consistent with an elongated assembly of discrete HvoIAP monomers. Analysis of in-line SEC-SANS data of the HvoIAP oligomer, the first such experiment to be conducted on a membrane protein at Oak Ridge National Lab (ORNL), shows a diversity of elongated and spherical species, including one consistent with the tetrameric assembly reported for the Methanoculleus marisnigri JR1 IAP crystal structure not observed previously in solution. Reconstitution of monomeric HvoIAP into bicelles increases enzyme activity and results in the assembly of HvoIAP into a species with similar dimensions as the ensemble of oligomers isolated from DDM. Our study reveals lipid-mediated HvoIAP self-assembly and demonstrates the utility of in-line SEC-SANS in elucidating oligomerization states of small membrane proteins.


Asunto(s)
Proteasas de Ácido Aspártico , Haloferax volcanii , Difracción de Neutrones , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Proteasas de Ácido Aspártico/metabolismo , Proteasas de Ácido Aspártico/química , Haloferax volcanii/enzimología , Membrana Celular/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Simulación de Dinámica Molecular , Estructura Cuaternaria de Proteína
5.
J Chem Phys ; 160(24)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38916266

RESUMEN

Access to accurate force-field parameters for small molecules is crucial for computational studies of their interactions with proteins. Although a number of general force fields for small molecules exist, e.g., CGenFF, GAFF, and OPLS, they do not cover all common chemical groups and their combinations. The Force Field Toolkit (ffTK) provides a comprehensive graphical interface that streamlines the development of classical parameters for small molecules directly from quantum mechanical (QM) calculations, allowing for force-field generation for almost any chemical group and validation of the fit relative to the target data. ffTK relies on supported external software for the QM calculations, but it can generate the necessary QM input files and parse and analyze the QM output. In previous ffTK versions, support for Gaussian and ORCA QM packages was implemented. Here, we add support for Psi4, an open-source QM package free for all users, thereby broadening user access to ffTK. We also compare the parameter sets obtained with the new ffTK version using Gaussian, ORCA, and Psi4 for three molecules: pyrrolidine, n-propylammonium cation, and chlorobenzene. Despite minor differences between the resulting parameter sets for each compound, most prominently in the dihedral and improper terms, we show that conformational distributions sampled in molecular dynamics simulations using these parameter sets are quite comparable.

6.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915626

RESUMEN

Tripartite resistance nodulation and cell division multidrug efflux pumps span the periplasm and are a major driver of multidrug resistance among Gram-negative bacteria. The periplasm provides a distinct environment between the inner and outer membranes of Gram-negative bacteria. Cations, such as Mg2+, become concentrated within the periplasm and, in contrast to the cytoplasm, its pH is sensitive to conditions outside the cell. Here, we reveal an interplay between Mg2+ and pH in modulating the dynamics of the periplasmic adaptor protein, AcrA, and its function within the prototypical AcrAB-TolC multidrug efflux pump from Escherichia coli. In the absence of Mg2+, AcrA becomes increasingly plastic within acidic conditions, but when Mg2+ is bound this is ameliorated, resulting in domain specific organisation in neutral to weakly acidic regimes. We establish a unique histidine residue directs these structural dynamics and is essential for sustaining pump efflux activity across acidic, neutral, and alkaline conditions. Overall, we propose Mg2+ conserves the structural mobility of AcrA to ensure optimal AcrAB-TolC function within rapid changing environments commonly faced by the periplasm during bacterial infection and colonization. This work highlights that Mg2+ is an important mechanistic component in this pump class and possibly across other periplasmic lipoproteins.

7.
J Phys Chem B ; 128(22): 5371-5377, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38787347

RESUMEN

The cell envelope of Gram-negative bacteria is composed of an outer membrane (OM) and an inner membrane (IM) and a peptidoglycan cell wall (CW) between them. Combined with Braun's lipoprotein (Lpp), which connects the OM and the CW, and numerous membrane proteins that exist in both OM and IM, the cell envelope creates a mechanically stable environment that resists various physical and chemical perturbations to the cell, including turgor pressure caused by the solute concentration difference between the cytoplasm of the cell and the extracellular environment. Previous computational studies have explored how individual components (OM, IM, and CW) can resist turgor pressure although combinations of them have been less well studied. To that end, we constructed multiple OM-CW systems, including the Lpp connections with the CW under increasing degrees of strain. The results show that the OM can effectively resist the tension imposed by the CW, shrinking by only 3-5% in area even when the CW is stretched to 2.5× its relaxed area. The area expansion modulus of the system increases with increasing CW strain, although the OM remains a significant contributor to the envelope's mechanical stability. Additionally, we find that when the protein TolC is embedded in the OM, its stiffness increases.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Pared Celular , Peptidoglicano , Pared Celular/química , Pared Celular/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Simulación de Dinámica Molecular
8.
ACS Infect Dis ; 10(6): 2032-2046, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38728322

RESUMEN

SARS-CoV-2 spike (S) proteins undergo extensive glycosylation, aiding in proper folding, enhancing stability, and evading host immune surveillance. In this study, we used mass spectrometric analysis to elucidate the N-glycosylation characteristics and disulfide bonding of recombinant spike proteins derived from the SARS-CoV-2 Omicron variant (B.1.1.529) in comparison with the D614G spike variant. Furthermore, we conducted microsecond-long molecular dynamics simulations on spike proteins to resolve how the different N-glycans impact spike conformational sampling in the two variants. Our findings reveal that the Omicron spike protein maintains an overall resemblance to the D614G spike variant in terms of site-specific glycan processing and disulfide bond formation. Nonetheless, alterations in glycans were observed at certain N-glycosylation sites. These changes, in synergy with mutations within the Omicron spike protein, result in increased surface accessibility of the macromolecule, including the ectodomain, receptor-binding domain, and N-terminal domain. Additionally, mutagenesis and pull-down assays reveal the role of glycosylation of a specific sequon (N149); furthermore, the correlation of MD simulation and HDX-MS identified several high-dynamic areas of the spike proteins. These insights contribute to our understanding of the interplay between structure and function, thereby advancing effective vaccination and therapeutic strategies.


Asunto(s)
Simulación de Dinámica Molecular , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicosilación , SARS-CoV-2/química , SARS-CoV-2/genética , Humanos , Polisacáridos/química , Polisacáridos/metabolismo , COVID-19/virología , Mutación , Conformación Proteica
9.
Curr Opin Struct Biol ; 87: 102828, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38723580

RESUMEN

Recent advances in molecular dynamics (MD) simulations have led to rapid improvement in our understanding of the molecular details of the outer membranes (OMs) of Gram-negative bacteria. In this review, we highlight the latest discoveries from MD simulations of OMs, shedding light on the dynamic nature of these bacteria's first line of defense. With the focus on cutting-edge approaches, we explore the OM's sensitivity to structural features, including divalent cations and membrane composition, which have emerged as crucial determinants of antimicrobial passage. Additionally, studies have provided novel insights into outer-membrane proteins (OMPs), revealing their intricate roles in substrate translocation and their distinct interactions with lipopolysaccharides (LPS) in the OM. Finally, we explore the challenging process of ß-barrel membrane protein insertion, showcasing recent findings that have enhanced our grasp of this fundamental biological phenomenon.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Bacterias Gramnegativas , Simulación de Dinámica Molecular , Bacterias Gramnegativas/metabolismo , Bacterias Gramnegativas/química , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/química , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo
10.
ACS Infect Dis ; 10(4): 1162-1173, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38564659

RESUMEN

Hepatitis B virus (HBV) is the leading cause of chronic liver pathologies worldwide. HBV nucleocapsid, a key structural component, is formed through the self-assembly of the capsid protein units. Therefore, interfering with the self-assembly process is a promising approach for the development of novel antiviral agents. Applied to HBV, this approach has led to several classes of capsid assembly modulators (CAMs). Here, we report structurally novel CAMs with moderate activity and low toxicity, discovered through a biophysics-guided approach combining docking, molecular dynamics simulations, and a series of assays with a particular emphasis on biophysical experiments. Several of the identified compounds induce the formation of aberrant capsids and inhibit HBV DNA replication in vitro, suggesting that they possess modest capsid assembly modulation effects. The synergistic computational and experimental approaches provided key insights that facilitated the identification of compounds with promising activities. The discovery of preclinical CAMs presents opportunities for subsequent optimization efforts, thereby opening new avenues for HBV inhibition.


Asunto(s)
Cápside , Virus de la Hepatitis B , Cápside/metabolismo , Proteínas de la Cápside , Ensamble de Virus , Nucleocápside
11.
Nat Commun ; 15(1): 2182, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467638

RESUMEN

Doa10 (MARCHF6 in metazoans) is a large polytopic membrane-embedded E3 ubiquitin ligase in the endoplasmic reticulum (ER) that plays an important role in quality control of cytosolic and ER proteins. Although Doa10 is highly conserved across eukaryotes, it is not understood how Doa10 recognizes its substrates. Here, we define the substrate recognition mechanism of Doa10 by structural and functional analyses on Saccharomyces cerevisiae Doa10 and its model substrates. Cryo-EM analysis shows that Doa10 has unusual architecture with a large lipid-filled central cavity, and its conserved middle domain forms an additional water-filled lateral tunnel open to the cytosol. Our biochemical data and molecular dynamics simulations suggest that the entrance of the substrate's degron peptide into the lateral tunnel is required for efficient polyubiquitination. The N- and C-terminal membrane domains of Doa10 seem to form fence-like features to restrict polyubiquitination to those proteins that can access the central cavity and lateral tunnel. Our study reveals how extended hydrophobic sequences at the termini of substrate proteins are recognized by Doa10 as a signal for quality control.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ubiquitina , Ubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Retículo Endoplásmico/metabolismo
12.
Biophys J ; 123(17): 2790-2806, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38297834

RESUMEN

De novo peptide design is a new frontier that has broad application potential in the biological and biomedical fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based on evolutionarily derived protein sequences and lack the physicochemical context essential in protein folding. Generative machine learning for de novo peptide design is a promising way to synthesize theoretical data that are based on, but unique from, the observable universe. In this study, we created and tested a custom peptide generative adversarial network intended to design peptide sequences that can fold into the ß-hairpin secondary structure. This deep neural network model is designed to establish a preliminary foundation of the generative approach based on physicochemical and conformational properties of 20 canonical amino acids, for example, hydrophobicity and residue volume, using extant structure-specific sequence data from the PDB. The beta generative adversarial network model robustly distinguishes secondary structures of ß hairpin from α helix and intrinsically disordered peptides with an accuracy of up to 96% and generates artificial ß-hairpin peptide sequences with minimum sequence identities around 31% and 50% when compared against the current NCBI PDB and nonredundant databases, respectively. These results highlight the potential of generative models specifically anchored by physicochemical and conformational property features of amino acids to expand the sequence-to-structure landscape of proteins beyond evolutionary limits.


Asunto(s)
Péptidos , Péptidos/química , Secuencia de Aminoácidos , Estructura Secundaria de Proteína , Redes Neurales de la Computación , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares
13.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260251

RESUMEN

Doa10 (MARCH6 in metazoans) is a large polytopic membrane-embedded E3 ubiquitin ligase in the endoplasmic reticulum (ER) that plays an important role in quality control of cytosolic and ER proteins. Although Doa10 is highly conserved across eukaryotes, it is not understood how Doa10 recognizes its substrates. Here, we defined the substrate recognition mechanism of Doa10 by structural and functional analyses on Saccharomyces cerevisiae Doa10 and its well-defined degron Deg1. Cryo-EM analysis shows that Doa10 has unusual architecture with a large lipid-filled central cavity, and its conserved middle domain forms an additional water-filled lateral tunnel open to the cytosol. Our biochemical data and molecular dynamics simulations suggest that the entrance of the substrate's degron peptide into the lateral tunnel is required for efficient polyubiquitination. The N- and C-terminal membrane domains of Doa10 seem to form fence-like features to restrict polyubiquitination to those proteins that can access the central cavity and lateral tunnel.

14.
Nat Commun ; 15(1): 155, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168102

RESUMEN

Studies of folded-to-misfolded transitions using model protein systems reveal a range of unfolding needed for exposure of amyloid-prone regions for subsequent fibrillization. Here, we probe the relationship between unfolding and aggregation for glaucoma-associated myocilin. Mutations within the olfactomedin domain of myocilin (OLF) cause a gain-of-function, namely cytotoxic intracellular aggregation, which hastens disease progression. Aggregation by wild-type OLF (OLFWT) competes with its chemical unfolding, but only below the threshold where OLF loses tertiary structure. Representative moderate (OLFD380A) and severe (OLFI499F) disease variants aggregate differently, with rates comparable to OLFWT in initial stages of unfolding, and variants adopt distinct partially folded structures seen along the OLFWT urea-unfolding pathway. Whether initiated with mutation or chemical perturbation, unfolding propagates outward to the propeller surface. In sum, for this large protein prone to amyloid formation, the requirement for a conformational change to promote amyloid fibrillization leads to direct competition between unfolding and aggregation.


Asunto(s)
Amiloide , Glaucoma , Humanos , Amiloide/metabolismo , Glaucoma/genética , Mutación , Péptidos beta-Amiloides/genética , Proteínas Amiloidogénicas/genética , Pliegue de Proteína
15.
Structure ; 32(1): 5-7, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181727

RESUMEN

In this issue of Structure, Heo and Feig present cg2all, a novel deep-learning model capable of efficiently predicting all-atom protein structures from coarse-grained (CG) representations. The model maintains high accuracy, even when the CG model is simplified to a single bead per residue, and has a number of promising applications.

16.
J Exp Med ; 221(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37962568

RESUMEN

Lymphocyte-specific protein tyrosine kinase (LCK) is essential for T cell antigen receptor (TCR)-mediated signal transduction. Here, we report two siblings homozygous for a novel LCK variant (c.1318C>T; P440S) characterized by T cell lymphopenia with skewed memory phenotype, infant-onset recurrent infections, failure to thrive, and protracted diarrhea. The patients' T cells show residual TCR signal transduction and proliferation following anti-CD3/CD28 and phytohemagglutinin (PHA) stimulation. We demonstrate in mouse models that complete (Lck-/-) versus partial (LckP440S/P440S) loss-of-function LCK causes disease with differing phenotypes. While both Lck-/- and LckP440S/P440S mice exhibit arrested thymic T cell development and profound T cell lymphopenia, only LckP440S/P440S mice show residual T cell proliferation, cytokine production, and intestinal inflammation. Furthermore, the intestinal disease in the LckP440S/P440S mice is prevented by CD4+ T cell depletion or regulatory T cell transfer. These findings demonstrate that P440S LCK spares sufficient T cell function to allow the maturation of some conventional T cells but not regulatory T cells-leading to intestinal inflammation.


Asunto(s)
Síndromes de Inmunodeficiencia , Linfopenia , Lactante , Humanos , Animales , Ratones , Antígenos CD28 , Linfocitos T CD4-Positivos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/genética , Receptores de Antígenos de Linfocitos T/genética , Inflamación/genética , Linfopenia/genética
17.
J Chem Theory Comput ; 19(24): 9077-9092, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38091976

RESUMEN

Calculating the binding free energy of integral transmembrane (TM) proteins is crucial for understanding the mechanisms by which they recognize one another and reversibly associate. The glycophorin A (GpA) homodimer, composed of two α-helical segments, has long served as a model system for studying TM protein reversible association. The present work establishes a methodological framework for calculating the binding affinity of the GpA homodimer in the heterogeneous environment of a membrane. Our investigation carefully considered a variety of protocols, including the appropriate choice of the force field, rigorous standardization reflecting the experimental conditions, sampling algorithm, anisotropic environment, and collective variables, to accurately describe GpA dimerization via molecular dynamics-based approaches. Specifically, two strategies were explored: (i) an unrestrained potential mean force (PMF) calculation, which merely enhances sampling along the separation of the two binding partners without any restraint, and (ii) a so-called "geometrical route", whereby the α-helices are progressively separated with imposed restraints on their orientational, positional, and conformational degrees of freedom to accelerate convergence. Our simulations reveal that the simplified, unrestrained PMF approach is inadequate for the description of GpA dimerization. Instead, the geometrical route, tailored specifically to GpA in a membrane environment, yields excellent agreement with experimental data within a reasonable computational time. A dimerization free energy of -10.7 kcal/mol is obtained, in fairly good agreement with available experimental data. The geometrical route further helps elucidate how environmental forces drive association before helical interactions stabilize it. Our simulations also brought to light a distinct, long-lived spatial arrangement that potentially serves as an intermediate state during dimer formation. The methodological advances in the generalized geometrical route provide a powerful tool for accurate and efficient binding-affinity calculations of intricate TM protein complexes in inhomogeneous environments.


Asunto(s)
Proteínas de la Membrana , Simulación de Dinámica Molecular , Unión Proteica , Proteínas de la Membrana/química , Entropía , Dimerización
18.
PNAS Nexus ; 2(8): pgad268, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37644917

RESUMEN

Methane clathrates on continental margins contain the largest stores of hydrocarbons on Earth, yet the role of biomolecules in clathrate formation and stability remains almost completely unknown. Here, we report new methane clathrate-binding proteins (CbpAs) of bacterial origin discovered in metagenomes from gas clathrate-bearing ocean sediments. CbpAs show similar suppression of methane clathrate growth as the commercial gas clathrate inhibitor polyvinylpyrrolidone and inhibit clathrate growth at lower concentrations than antifreeze proteins (AFPs) previously tested. Unlike AFPs, CbpAs are selective for clathrate over ice. CbpA3 adopts a nonglobular, extended structure with an exposed hydrophobic surface, and, unexpectedly, its TxxxAxxxAxx motif common to AFPs is buried and not involved in clathrate binding. Instead, simulations and mutagenesis suggest a bipartite interaction of CbpAs with methane clathrate, with the pyrrolidine ring of a highly conserved proline residue mediating binding by filling empty clathrate cages. The discovery that CbpAs exert such potent control on methane clathrate properties implies that biomolecules from native sediment bacteria may be important for clathrate stability and habitability.

19.
J Phys Chem B ; 127(34): 7509-7517, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37587651

RESUMEN

BamA, the core component of the ß-barrel assembly machinery (BAM) complex, is an outer-membrane protein (OMP) in Gram-negative bacteria. Its function is to insert and fold substrate OMPs into the outer membrane (OM). Evidence suggests that BamA follows the asymmetric hybrid-barrel model where the first and last strands of BamA separate, a process known as lateral gate opening, to allow nascent substrate OMP ß-strands to sequentially insert and fold through ß-augmentation. Recently, multiple lead compounds that interfere with BamA's function have been identified. We modeled and then docked one of these compounds into either the extracellular loops of BamA or the open lateral gate. With the compound docked in the loops, we found that the lateral gate remains closed during 5 µs molecular dynamics simulations. The same compound when docked in the open lateral gate stays bound to the ß16 strand of BamA during the simulation, which would prevent substrate OMP folding. In addition, we simulated mutants of BamA that are resistant to one or more of the identified lead compounds. In these simulations, we observed a differing degree and/or frequency of opening of BamA's lateral gate compared to BamA-apo, suggesting that the mutations grant resistance by altering the dynamics at the gate. We conclude that the compounds act by inhibiting BamA lateral gate opening and/or binding of substrate, thus preventing subsequent OMP folding and insertion.


Asunto(s)
Proteínas de la Membrana , Pliegue de Proteína , Simulación de Dinámica Molecular , Mutación
20.
Front Phys ; 112023.
Artículo en Inglés | MEDLINE | ID: mdl-37538992

RESUMEN

Recent studies in polymer physics have created macro-scale analogs to solute microscopic polymer chains like DNA by inducing diffusive motion on a chain of beads. These bead chains have persistence lengths of O(10) links and undergo diffusive motion under random fluctuations like vibration. We present a bead chain model within a new stochastic forcing system: an air fluidizing bed of granular media. A chain of spherical 6 mm resin beads crimped onto silk thread are buffeted randomly by the multiphase flow of grains and low density rising air "bubbles". We "thermalize" bead chains of various lengths at different fluidizing airflow rates, while X-ray imaging captures a projection of the chains' dynamics within the media. With modern 3D printing techniques, we can better represent complex polymers by geometrically varying bead connections and their relative strength, e.g., mimicking the variable stiffness between adjacent nucleotide pairs of DNA. We also develop Discrete Element Method (DEM) simulations to study the 3D motion of the bead chain, where the bead chain is represented by simulated spherical particles connected by linear and angular spring-like bonds. In experiment, we find that the velocity distributions of the beads follow exponential distributions rather than the Gaussian distributions expected from polymers in solution. Through use of the DEM simulation, we find that this difference can likely be attributed to the distributions of the forces imparted onto the chain from the fluidized bed environment. We anticipate expanding this study in the future to explore a wide range of chain composition and confinement geometry, which will provide insights into the physics of large biopolymers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA