Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Curr Opin Struct Biol ; 87: 102828, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723580

RESUMEN

Recent advances in molecular dynamics (MD) simulations have led to rapid improvement in our understanding of the molecular details of the outer membranes (OMs) of Gram-negative bacteria. In this review, we highlight the latest discoveries from MD simulations of OMs, shedding light on the dynamic nature of these bacteria's first line of defense. With the focus on cutting-edge approaches, we explore the OM's sensitivity to structural features, including divalent cations and membrane composition, which have emerged as crucial determinants of antimicrobial passage. Additionally, studies have provided novel insights into outer-membrane proteins (OMPs), revealing their intricate roles in substrate translocation and their distinct interactions with lipopolysaccharides (LPS) in the OM. Finally, we explore the challenging process of ß-barrel membrane protein insertion, showcasing recent findings that have enhanced our grasp of this fundamental biological phenomenon.

2.
ACS Infect Dis ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728322

RESUMEN

SARS-CoV-2 spike (S) proteins undergo extensive glycosylation, aiding in proper folding, enhancing stability, and evading host immune surveillance. In this study, we used mass spectrometric analysis to elucidate the N-glycosylation characteristics and disulfide bonding of recombinant spike proteins derived from the SARS-CoV-2 Omicron variant (B.1.1.529) in comparison with the D614G spike variant. Furthermore, we conducted microsecond-long molecular dynamics simulations on spike proteins to resolve how the different N-glycans impact spike conformational sampling in the two variants. Our findings reveal that the Omicron spike protein maintains an overall resemblance to the D614G spike variant in terms of site-specific glycan processing and disulfide bond formation. Nonetheless, alterations in glycans were observed at certain N-glycosylation sites. These changes, in synergy with mutations within the Omicron spike protein, result in increased surface accessibility of the macromolecule, including the ectodomain, receptor-binding domain, and N-terminal domain. Additionally, mutagenesis and pull-down assays reveal the role of glycosylation of a specific sequon (N149); furthermore, the correlation of MD simulation and HDX-MS identified several high-dynamic areas of the spike proteins. These insights contribute to our understanding of the interplay between structure and function, thereby advancing effective vaccination and therapeutic strategies.

3.
ACS Infect Dis ; 10(4): 1162-1173, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38564659

RESUMEN

Hepatitis B virus (HBV) is the leading cause of chronic liver pathologies worldwide. HBV nucleocapsid, a key structural component, is formed through the self-assembly of the capsid protein units. Therefore, interfering with the self-assembly process is a promising approach for the development of novel antiviral agents. Applied to HBV, this approach has led to several classes of capsid assembly modulators (CAMs). Here, we report structurally novel CAMs with moderate activity and low toxicity, discovered through a biophysics-guided approach combining docking, molecular dynamics simulations, and a series of assays with a particular emphasis on biophysical experiments. Several of the identified compounds induce the formation of aberrant capsids and inhibit HBV DNA replication in vitro, suggesting that they possess modest capsid assembly modulation effects. The synergistic computational and experimental approaches provided key insights that facilitated the identification of compounds with promising activities. The discovery of preclinical CAMs presents opportunities for subsequent optimization efforts, thereby opening new avenues for HBV inhibition.


Asunto(s)
Cápside , Virus de la Hepatitis B , Cápside/metabolismo , Proteínas de la Cápside , Ensamble de Virus , Nucleocápside
4.
Nat Commun ; 15(1): 2182, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467638

RESUMEN

Doa10 (MARCHF6 in metazoans) is a large polytopic membrane-embedded E3 ubiquitin ligase in the endoplasmic reticulum (ER) that plays an important role in quality control of cytosolic and ER proteins. Although Doa10 is highly conserved across eukaryotes, it is not understood how Doa10 recognizes its substrates. Here, we define the substrate recognition mechanism of Doa10 by structural and functional analyses on Saccharomyces cerevisiae Doa10 and its model substrates. Cryo-EM analysis shows that Doa10 has unusual architecture with a large lipid-filled central cavity, and its conserved middle domain forms an additional water-filled lateral tunnel open to the cytosol. Our biochemical data and molecular dynamics simulations suggest that the entrance of the substrate's degron peptide into the lateral tunnel is required for efficient polyubiquitination. The N- and C-terminal membrane domains of Doa10 seem to form fence-like features to restrict polyubiquitination to those proteins that can access the central cavity and lateral tunnel. Our study reveals how extended hydrophobic sequences at the termini of substrate proteins are recognized by Doa10 as a signal for quality control.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ubiquitina , Ubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Retículo Endoplásmico/metabolismo
5.
Biophys J ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38297834

RESUMEN

De novo peptide design is a new frontier that has broad application potential in the biological and biomedical fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based on evolutionarily derived protein sequences and lack the physicochemical context essential in protein folding. Generative machine learning for de novo peptide design is a promising way to synthesize theoretical data that are based on, but unique from, the observable universe. In this study, we created and tested a custom peptide generative adversarial network intended to design peptide sequences that can fold into the ß-hairpin secondary structure. This deep neural network model is designed to establish a preliminary foundation of the generative approach based on physicochemical and conformational properties of 20 canonical amino acids, for example, hydrophobicity and residue volume, using extant structure-specific sequence data from the PDB. The beta generative adversarial network model robustly distinguishes secondary structures of ß hairpin from α helix and intrinsically disordered peptides with an accuracy of up to 96% and generates artificial ß-hairpin peptide sequences with minimum sequence identities around 31% and 50% when compared against the current NCBI PDB and nonredundant databases, respectively. These results highlight the potential of generative models specifically anchored by physicochemical and conformational property features of amino acids to expand the sequence-to-structure landscape of proteins beyond evolutionary limits.

6.
Nat Commun ; 15(1): 155, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168102

RESUMEN

Studies of folded-to-misfolded transitions using model protein systems reveal a range of unfolding needed for exposure of amyloid-prone regions for subsequent fibrillization. Here, we probe the relationship between unfolding and aggregation for glaucoma-associated myocilin. Mutations within the olfactomedin domain of myocilin (OLF) cause a gain-of-function, namely cytotoxic intracellular aggregation, which hastens disease progression. Aggregation by wild-type OLF (OLFWT) competes with its chemical unfolding, but only below the threshold where OLF loses tertiary structure. Representative moderate (OLFD380A) and severe (OLFI499F) disease variants aggregate differently, with rates comparable to OLFWT in initial stages of unfolding, and variants adopt distinct partially folded structures seen along the OLFWT urea-unfolding pathway. Whether initiated with mutation or chemical perturbation, unfolding propagates outward to the propeller surface. In sum, for this large protein prone to amyloid formation, the requirement for a conformational change to promote amyloid fibrillization leads to direct competition between unfolding and aggregation.


Asunto(s)
Amiloide , Glaucoma , Humanos , Amiloide/metabolismo , Glaucoma/genética , Mutación , Péptidos beta-Amiloides/genética , Proteínas Amiloidogénicas/genética , Pliegue de Proteína
7.
Structure ; 32(1): 5-7, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181727

RESUMEN

In this issue of Structure, Heo and Feig present cg2all, a novel deep-learning model capable of efficiently predicting all-atom protein structures from coarse-grained (CG) representations. The model maintains high accuracy, even when the CG model is simplified to a single bead per residue, and has a number of promising applications.

8.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260251

RESUMEN

Doa10 (MARCH6 in metazoans) is a large polytopic membrane-embedded E3 ubiquitin ligase in the endoplasmic reticulum (ER) that plays an important role in quality control of cytosolic and ER proteins. Although Doa10 is highly conserved across eukaryotes, it is not understood how Doa10 recognizes its substrates. Here, we defined the substrate recognition mechanism of Doa10 by structural and functional analyses on Saccharomyces cerevisiae Doa10 and its well-defined degron Deg1. Cryo-EM analysis shows that Doa10 has unusual architecture with a large lipid-filled central cavity, and its conserved middle domain forms an additional water-filled lateral tunnel open to the cytosol. Our biochemical data and molecular dynamics simulations suggest that the entrance of the substrate's degron peptide into the lateral tunnel is required for efficient polyubiquitination. The N- and C-terminal membrane domains of Doa10 seem to form fence-like features to restrict polyubiquitination to those proteins that can access the central cavity and lateral tunnel.

9.
J Exp Med ; 221(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37962568

RESUMEN

Lymphocyte-specific protein tyrosine kinase (LCK) is essential for T cell antigen receptor (TCR)-mediated signal transduction. Here, we report two siblings homozygous for a novel LCK variant (c.1318C>T; P440S) characterized by T cell lymphopenia with skewed memory phenotype, infant-onset recurrent infections, failure to thrive, and protracted diarrhea. The patients' T cells show residual TCR signal transduction and proliferation following anti-CD3/CD28 and phytohemagglutinin (PHA) stimulation. We demonstrate in mouse models that complete (Lck-/-) versus partial (LckP440S/P440S) loss-of-function LCK causes disease with differing phenotypes. While both Lck-/- and LckP440S/P440S mice exhibit arrested thymic T cell development and profound T cell lymphopenia, only LckP440S/P440S mice show residual T cell proliferation, cytokine production, and intestinal inflammation. Furthermore, the intestinal disease in the LckP440S/P440S mice is prevented by CD4+ T cell depletion or regulatory T cell transfer. These findings demonstrate that P440S LCK spares sufficient T cell function to allow the maturation of some conventional T cells but not regulatory T cells-leading to intestinal inflammation.


Asunto(s)
Síndromes de Inmunodeficiencia , Linfopenia , Lactante , Humanos , Animales , Ratones , Antígenos CD28 , Linfocitos T CD4-Positivos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/genética , Receptores de Antígenos de Linfocitos T/genética , Inflamación/genética , Linfopenia/genética
10.
J Chem Theory Comput ; 19(24): 9077-9092, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38091976

RESUMEN

Calculating the binding free energy of integral transmembrane (TM) proteins is crucial for understanding the mechanisms by which they recognize one another and reversibly associate. The glycophorin A (GpA) homodimer, composed of two α-helical segments, has long served as a model system for studying TM protein reversible association. The present work establishes a methodological framework for calculating the binding affinity of the GpA homodimer in the heterogeneous environment of a membrane. Our investigation carefully considered a variety of protocols, including the appropriate choice of the force field, rigorous standardization reflecting the experimental conditions, sampling algorithm, anisotropic environment, and collective variables, to accurately describe GpA dimerization via molecular dynamics-based approaches. Specifically, two strategies were explored: (i) an unrestrained potential mean force (PMF) calculation, which merely enhances sampling along the separation of the two binding partners without any restraint, and (ii) a so-called "geometrical route", whereby the α-helices are progressively separated with imposed restraints on their orientational, positional, and conformational degrees of freedom to accelerate convergence. Our simulations reveal that the simplified, unrestrained PMF approach is inadequate for the description of GpA dimerization. Instead, the geometrical route, tailored specifically to GpA in a membrane environment, yields excellent agreement with experimental data within a reasonable computational time. A dimerization free energy of -10.7 kcal/mol is obtained, in fairly good agreement with available experimental data. The geometrical route further helps elucidate how environmental forces drive association before helical interactions stabilize it. Our simulations also brought to light a distinct, long-lived spatial arrangement that potentially serves as an intermediate state during dimer formation. The methodological advances in the generalized geometrical route provide a powerful tool for accurate and efficient binding-affinity calculations of intricate TM protein complexes in inhomogeneous environments.


Asunto(s)
Proteínas de la Membrana , Simulación de Dinámica Molecular , Unión Proteica , Proteínas de la Membrana/química , Entropía , Dimerización
11.
J Phys Chem B ; 127(34): 7509-7517, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37587651

RESUMEN

BamA, the core component of the ß-barrel assembly machinery (BAM) complex, is an outer-membrane protein (OMP) in Gram-negative bacteria. Its function is to insert and fold substrate OMPs into the outer membrane (OM). Evidence suggests that BamA follows the asymmetric hybrid-barrel model where the first and last strands of BamA separate, a process known as lateral gate opening, to allow nascent substrate OMP ß-strands to sequentially insert and fold through ß-augmentation. Recently, multiple lead compounds that interfere with BamA's function have been identified. We modeled and then docked one of these compounds into either the extracellular loops of BamA or the open lateral gate. With the compound docked in the loops, we found that the lateral gate remains closed during 5 µs molecular dynamics simulations. The same compound when docked in the open lateral gate stays bound to the ß16 strand of BamA during the simulation, which would prevent substrate OMP folding. In addition, we simulated mutants of BamA that are resistant to one or more of the identified lead compounds. In these simulations, we observed a differing degree and/or frequency of opening of BamA's lateral gate compared to BamA-apo, suggesting that the mutations grant resistance by altering the dynamics at the gate. We conclude that the compounds act by inhibiting BamA lateral gate opening and/or binding of substrate, thus preventing subsequent OMP folding and insertion.


Asunto(s)
Proteínas de la Membrana , Pliegue de Proteína , Simulación de Dinámica Molecular , Mutación
12.
Front Phys ; 112023.
Artículo en Inglés | MEDLINE | ID: mdl-37538992

RESUMEN

Recent studies in polymer physics have created macro-scale analogs to solute microscopic polymer chains like DNA by inducing diffusive motion on a chain of beads. These bead chains have persistence lengths of O(10) links and undergo diffusive motion under random fluctuations like vibration. We present a bead chain model within a new stochastic forcing system: an air fluidizing bed of granular media. A chain of spherical 6 mm resin beads crimped onto silk thread are buffeted randomly by the multiphase flow of grains and low density rising air "bubbles". We "thermalize" bead chains of various lengths at different fluidizing airflow rates, while X-ray imaging captures a projection of the chains' dynamics within the media. With modern 3D printing techniques, we can better represent complex polymers by geometrically varying bead connections and their relative strength, e.g., mimicking the variable stiffness between adjacent nucleotide pairs of DNA. We also develop Discrete Element Method (DEM) simulations to study the 3D motion of the bead chain, where the bead chain is represented by simulated spherical particles connected by linear and angular spring-like bonds. In experiment, we find that the velocity distributions of the beads follow exponential distributions rather than the Gaussian distributions expected from polymers in solution. Through use of the DEM simulation, we find that this difference can likely be attributed to the distributions of the forces imparted onto the chain from the fluidized bed environment. We anticipate expanding this study in the future to explore a wide range of chain composition and confinement geometry, which will provide insights into the physics of large biopolymers.

13.
PNAS Nexus ; 2(8): pgad268, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37644917

RESUMEN

Methane clathrates on continental margins contain the largest stores of hydrocarbons on Earth, yet the role of biomolecules in clathrate formation and stability remains almost completely unknown. Here, we report new methane clathrate-binding proteins (CbpAs) of bacterial origin discovered in metagenomes from gas clathrate-bearing ocean sediments. CbpAs show similar suppression of methane clathrate growth as the commercial gas clathrate inhibitor polyvinylpyrrolidone and inhibit clathrate growth at lower concentrations than antifreeze proteins (AFPs) previously tested. Unlike AFPs, CbpAs are selective for clathrate over ice. CbpA3 adopts a nonglobular, extended structure with an exposed hydrophobic surface, and, unexpectedly, its TxxxAxxxAxx motif common to AFPs is buried and not involved in clathrate binding. Instead, simulations and mutagenesis suggest a bipartite interaction of CbpAs with methane clathrate, with the pyrrolidine ring of a highly conserved proline residue mediating binding by filling empty clathrate cages. The discovery that CbpAs exert such potent control on methane clathrate properties implies that biomolecules from native sediment bacteria may be important for clathrate stability and habitability.

14.
Nat Commun ; 14(1): 3900, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463890

RESUMEN

Membrane efflux pumps play a major role in bacterial multidrug resistance. The tripartite multidrug efflux pump system from Escherichia coli, AcrAB-TolC, is a target for inhibition to lessen resistance development and restore antibiotic efficacy, with homologs in other ESKAPE pathogens. Here, we rationalize a mechanism of inhibition against the periplasmic adaptor protein, AcrA, using a combination of hydrogen/deuterium exchange mass spectrometry, cellular efflux assays, and molecular dynamics simulations. We define the structural dynamics of AcrA and find that an inhibitor can inflict long-range stabilisation across all four of its domains, whereas an interacting efflux substrate has minimal effect. Our results support a model where an inhibitor forms a molecular wedge within a cleft between the lipoyl and αß barrel domains of AcrA, diminishing its conformational transmission of drug-evoked signals from AcrB to TolC. This work provides molecular insights into multidrug adaptor protein function which could be valuable for developing antimicrobial therapeutics.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Transporte de Membrana , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transporte Biológico , Escherichia coli/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo
15.
Nature ; 621(7979): 620-626, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37344598

RESUMEN

Mitochondria import nearly all of their approximately 1,000-2,000 constituent proteins from the cytosol across their double-membrane envelope1-5. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM23 complex, mediates import of presequence-containing proteins (preproteins) into the mitochondrial matrix and inner membrane. Among about ten different subunits of the TIM23 complex, the essential multipass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel6-11. However, the mechanism by which these subunits form a translocation path in the membrane and enable the import process remains unclear due to a lack of structural information. Here we determined the cryo-electron microscopy structure of the core TIM23 complex (heterotrimeric Tim17-Tim23-Tim44) from Saccharomyces cerevisiae. Contrary to the prevailing model, Tim23 and Tim17 themselves do not form a water-filled channel, but instead have separate, lipid-exposed concave cavities that face in opposite directions. Our structural and biochemical analyses show that the cavity of Tim17, but not Tim23, forms the protein translocation path, whereas Tim23 probably has a structural role. The results further suggest that, during translocation of substrate polypeptides, the nonessential subunit Mgr2 seals the lateral opening of the Tim17 cavity to facilitate the translocation process. We propose a new model for the TIM23-mediated protein import and sorting mechanism, a central pathway in mitochondrial biogenesis.


Asunto(s)
Mitocondrias , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Microscopía por Crioelectrón , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/ultraestructura , Transporte de Proteínas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Mitocondrias/química , Mitocondrias/metabolismo , Mitocondrias/ultraestructura
16.
J Chem Theory Comput ; 19(11): 3025-3036, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37192279

RESUMEN

Viral outbreaks remain a serious threat to human and animal populations and motivate the continued development of antiviral drugs and vaccines, which in turn benefits from a detailed understanding of both viral structure and dynamics. While great strides have been made in characterizing these systems experimentally, molecular simulations have proven to be an essential, complementary approach. In this work, we review the contributions of molecular simulations to the understanding of viral structure, functional dynamics, and processes related to the viral life cycle. Approaches ranging from coarse-grained to all-atom representations are discussed, including current efforts at modeling complete viral systems. Overall, this review demonstrates that computational virology plays an essential role in understanding these systems.


Asunto(s)
Simulación de Dinámica Molecular , Estructuras Virales , Animales , Humanos
17.
Nucleic Acids Res ; 51(7): 3030-3040, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36869666

RESUMEN

The hybridization and dehybridization of DNA subject to tension is relevant to fundamental genetic processes and to the design of DNA-based mechanobiology assays. While strong tension accelerates DNA melting and decelerates DNA annealing, the effects of tension weaker than 5 pN are less clear. In this study, we developed a DNA bow assay, which uses the bending rigidity of double-stranded DNA (dsDNA) to exert weak tension on a single-stranded DNA (ssDNA) target in the range of 2-6 pN. Combining this assay with single-molecule FRET, we measured the hybridization and dehybridization kinetics between a 15 nt ssDNA under tension and a 8-9 nt oligonucleotide, and found that both the hybridization and dehybridization rates monotonically increase with tension for various nucleotide sequences tested. These findings suggest that the nucleated duplex in its transition state is more extended than the pure dsDNA or ssDNA counterpart. Based on coarse-grained oxDNA simulations, we propose that this increased extension of the transition state is due to steric repulsion between the unpaired ssDNA segments in close proximity to one another. Using linear force-extension relations verified by simulations of short DNA segments, we derived analytical equations for force-to-rate conversion that are in good agreement with our measurements.


Asunto(s)
ADN , Oligonucleótidos , Oligonucleótidos/genética , Hibridación de Ácido Nucleico , ADN/genética , ADN de Cadena Simple/genética , Fenómenos Mecánicos
18.
Biophys J ; 122(11): 2342-2352, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36926696

RESUMEN

Mycobacteria, such as Mycobacterium tuberculosis, are characterized by a uniquely thick and waxy cell envelope that consists of two membranes, with a variety of mycolates comprising their outer membrane (OM). The protein Mycobacterial membrane protein Large 3 (MmpL3) is responsible for the transport of a primary OM component, trehalose monomycolate (TMM), from the inner (cytoplasmic) membrane (IM) to the periplasmic space, a process driven by the proton gradient. Although multiple structures of MmpL3 with bound substrates have been solved, the exact pathway(s) for TMM or proton transport remains elusive. Here, employing molecular dynamics simulations we investigate putative pathways for either transport species. We hypothesized that MmpL3 will cycle through similar conformational states as the related transporter AcrB, which we used as targets for modeling the conformation of MmpL3. A continuous water pathway through the transmembrane region was found in one of these states, illustrating a putative pathway for protons. Additional equilibrium simulations revealed that TMM can diffuse from the membrane into a binding pocket in MmpL3 spontaneously. We also found that acetylation of TMM, which is required for transport, makes it more stable within MmpL3's periplasmic cavity compared with the unacetylated form.


Asunto(s)
Proteínas de la Membrana , Mycobacterium tuberculosis , Proteínas de la Membrana/metabolismo , Protones , Proteínas Bacterianas/química , Proteínas de Transporte de Membrana/química , Proteínas Portadoras/metabolismo , Mycobacterium tuberculosis/metabolismo , Transporte Biológico
19.
Biophys J ; 122(14): 2988-2995, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-36960532

RESUMEN

Autotransporters are a large family of virulence factors found in Gram-negative bacteria that play important roles in their pathogenesis. The passenger domain of autotransporters is almost always composed of a large ß-helix, with only a small portion of it being relevant to its virulence function. This has led to the hypothesis that the folding of the ß-helical structure aids the secretion of the passenger domain across the Gram-negative outer membrane. In this study, we used molecular dynamics simulations and enhanced sampling methods to investigate the stability and folding of the passenger domain of pertactin, an autotransporter from Bordetella pertussis. Specifically, we employed steered molecular dynamics to simulate the unfolding of the entire passenger domain as well as self-learning adaptive umbrella sampling to compare the energetics of folding rungs of the ß-helix independently ("isolated folding") versus folding rungs on top of a previously folded rung ("vectorial folding"). Our results showed that vectorial folding is highly favorable compared with isolated folding; moreover, our simulations showed that the C-terminal rung of the ß-helix is the most resistant to unfolding, in agreement with previous studies that found the C-terminal half of the passenger domain to be more stable than the N-terminal one. Overall, this study provides new insights into the folding process of an autotransporter passenger domain and its potential role in secretion across the outer membrane.


Asunto(s)
Proteínas de Escherichia coli , Sistemas de Secreción Tipo V , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Pliegue de Proteína , Factores de Virulencia de Bordetella/química , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química
20.
Nat Mater ; 22(3): 369-379, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36443576

RESUMEN

Messenger RNA has now been used to vaccinate millions of people. However, the diversity of pulmonary pathologies, including infections, genetic disorders, asthma and others, reveals the lung as an important organ to directly target for future RNA therapeutics and preventatives. Here we report the screening of 166 polymeric nanoparticle formulations for functional delivery to the lungs, obtained from a combinatorial synthesis approach combined with a low-dead-volume nose-only inhalation system for mice. We identify P76, a poly-ß-amino-thio-ester polymer, that exhibits increased expression over formulations lacking the thiol component, delivery to different animal species with varying RNA cargos and low toxicity. P76 allows for dose sparing when delivering an mRNA-expressed Cas13a-mediated treatment in a SARS-CoV-2 challenge model, resulting in similar efficacy to a 20-fold higher dose of a neutralizing antibody. Overall, the combinatorial synthesis approach allowed for the discovery of promising polymeric formulations for future RNA pharmaceutical development for the lungs.


Asunto(s)
COVID-19 , Animales , Ratones , ARN Mensajero/genética , SARS-CoV-2/genética , Polímeros/metabolismo , Pulmón , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...