Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Anim Sci ; 8: txae046, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665216

RESUMEN

Bovine respiratory disease (BRD) is a serious health and economic problem in the beef industry, which is often associated with transportation and caused by different pathogens. In this study, we evaluated the effect of a novel subunit targeted vaccine against bovine viral diarrhea virus (BVDV) in feedlot cattle, a major viral agent of BRD. The core of this novel vaccine is the fusion of the BVDV structural glycoprotein, E2, to a single-chain antibody, APCH, together termed, APCH-E2. The APCH antibody targets the E2 antigen to the major histocompatibility type II molecule (MHC-II) present in antigen-presenting cells. To evaluate the vaccine, 2,992 animals were randomly allocated into two groups, control group (N = 1,491) and treatment group (N = 1,501). Animals of both groups received the routine sanitary plan: two doses of clostridial, respiratory, and rabies vaccines. Animals within the treatment group also received two doses of a targeted subunit vaccine against BVDV. Serum samples were taken on the day of the first inoculation (T0) and 90 d later (T90). Viral circulation was monitored using an anti-P80 ELISA (virus-specific) and immune response was evaluated by anti-E2 ELISA (detects virus and vaccine immune responses). Only animals treated for respiratory disease were considered positive cases of BRD. Results demonstrate that the control group had significantly more animals treated for BRD cases compared to the treatment group (5.9% vs. 3.7%, P = 0.02). The control group had a greater number of animals positive for anti-P80 antibodies and significantly fewer animals positive for anti-E2 antibodies compared to the treatment group (69% vs. 61% and 71% vs. 99%, respectively, P = 0.003), consistent with natural viral circulation within this group. The treatment group, conversely, had fewer animals positive for anti-P80 antibodies and a greater number of animals positive for anti-E2 antibodies, consistent with a robust vaccine-induced antibody response and a reduction of the BVDV circulation within this group. The data indicate the new subunit targeted vaccine induced greater anti-E2 antibodies and reduced the amount of BVD virus circulation within the treatment group leading to a fewer number of animals needing to be treated for BRD.

2.
Animals (Basel) ; 12(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35681899

RESUMEN

Direct-fed microbials (DFM) are added to broiler chicken diets in order to promote the proliferation of beneficial intestinal bacterial populations, which may lead to gains in performance efficiency and, potentially, reduce the level of enteric pathogens in the broiler chickens. The selection and laboratory evaluation of Bacillus subtilis strains as well as the experimental trial results of a novel Bacillus-based commercial DFM product are described. Fifteen wild-type Bacillus subtilis strains were characterized and assayed for their enzyme production capability, spore resistance to pH, salinity, and temperature, and ability to inhibit the growth of E. coli and Salmonella spp. The final DFM formulation was evaluated and compared to an antibiotic growth promoter (AGPs) in two experimental trials. In Experiment 1, broilers were given a defined challenge of Eimeria spp. and Clostridium perfringens to induce intestinal dysbiosis. The optimal dose of the DFM was determined to be 0.3 kg/ton of feed. At this dose, the broilers fed the DFM performed as well as the Flavomycin®-fed broilers. Further, intestinal microbiome analysis indicates that the use of the DFM enhances bacterial diversity of the gut flora by day 5 of age, increasing levels of lactic acid bacteria (LAB) and Clostridiales by 25 days of age, which may enhance the digestion of feed and promote growth of the birds. In Experiment 2, the broilers were raised on recycled litter and given an undefined challenge orally to mimic commercial growth conditions. In this trial, the DFM performed as well as the bacitracin methylene disalicylate (BMD)-11%-fed birds. The results of the present studies suggest that this novel DFM, Zymospore®, improves the performance of broiler chickens under experimental challenge conditions as effective as an AGP, providing a safe and effective substitute to the poultry industry.

3.
Poult Sci ; 100(9): 101329, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34333387

RESUMEN

This study evaluated growth performance and cross-protection against Eimeria spp. using a subunit coccidia vaccine in 2 independent challenge experiments. In both trials, chickens were challenged with E. acervulina, E. maxima, and E. tenella oocysts. In Exp 1, 1000-day-old chickens were allocated in one of 2 treatments 1) Control group; 2) Biotech Vac Cox group. The vaccine was orally gavaged on d 2 and 16 of life and coccidia challenge was on d 21. Performance parameters were evaluated on d 21, 35, and 42. On d 34, coccidia lesions were scored. Oocysts per gram of feces (OPG) were evaluated on d 28, 35, and 42. In Exp 2, 900-day-old chickens were assigned in one of 2 treatments 1) Control group; 2) Biotech Vac Cox group. The vaccine was orally gavaged on d 2 and 16 of life and coccidia challenge was on d 21. Performance parameters were evaluated on d 21, 27, 35, and 42, and lesion scores and OPG at d 27. In Exp 1, chickens vaccinated had significantly lower feed intake (FI) at d 21 and feed conversion ratio (FCR) at d 35 compared to control chickens (P < 0.05). Vaccinated chickens showed a significant reduction (P ≤ 0.05) in OPG for E. maxima to nondetectable levels and for all coccidian species at d 42 compared to control chickens. In Exp 2, the chickens vaccinated showed a significant increase in BW, BW gain (BWG) and reduction in FCR on d 27, 35, and 42 (P ≤ 0.05). Vaccinated chickens had significantly lower (P ≤ 0.05) lesion scores for all 3 Eimeria species. Moreover, vaccinated chickens had a reduction in total OPG of 35.50% (P = 0.0739). Studies to evaluate the serological and mucosal immune response are currently being evaluated. This inactivated, orally delivered subunit vaccine offers significant cross-protection to Eimeria spp. and eliminates the needs to treat broilers with live oocysts, enhanced ease of use, and greater biosecurity to producers.


Asunto(s)
Coccidiosis , Eimeria tenella , Eimeria , Enfermedades de las Aves de Corral , Alimentación Animal/análisis , Animales , Biotecnología , Pollos , Coccidiosis/prevención & control , Coccidiosis/veterinaria , Enfermedades de las Aves de Corral/prevención & control , Vacunas de Subunidad
4.
Front Vet Sci ; 8: 652730, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34169104

RESUMEN

The present study evaluated the effect of administration of a water applied prebiotic on gut barrier failure (Experiment 1) and performance in broiler chickens under commercial conditions (Experiment 2). Experiment 1, one thousand four hundred and forty day-of-hatch Ross broiler chickens were assigned to one of two experimental groups (n = 30 replicate pens/treatment; n = 24 chicks/pen). Birds in the treated group received the prebiotic orally in the drinking water (0.2ml/bird) on days 3 and 17 of age. The second group served as the untreated control group. On d 18, intestinal samples were analyzed by qRT-PCR to determine the expression of MUC2, IL-8, TGF-ß4, and ZO-1. On d 17, d 28, and d 35 blood samples were collected to determine circulating endotoxin levels. On d 28, mucosal intestinal scrapping was collected to measure relative total sIgA levels. At d 42, liver samples were collected to evaluate liver bacterial translocation. In Experiment 2, the prebiotic was evaluated in two commercial trials. Chickens were raised under normal production conditions and fed a 3-phase commercial basal diet with enramycin (7 g/ton). In Trial 1, 8,974,237 broiler chickens were treated with the prebiotic. The prebiotic was administered in the drinking water (0.2 mL/bird) following the manufacture label instructions at day three and seventeen of life. Production parameters were compared to historical information from the company over the same broiler operation and production cycles. For trial 2, 921,411 broiler chickens were treated with the prebiotic as in Trial 1. In Experiment 1, treated chickens showed a significant (P < 0.05) increase in mRNA expression of MUC2, TGF-ß4, IL-8, ZO-1, and sIgA, but a significant reduction of serum endotoxin levels and incidence of liver lactose positive bacterial translocation when compared to non-treated chickens. In both trials of Experiment 2, a significant reduction in total mortality was observed in the treated chickens when compared with the historical farm data. Economic analysis utilizing the total percent of mortality revealed a $1: $2.50 USD and $1: $4.17 USD return for Trial 1 and Trial 2, respectively. The results suggest that the prebiotic positively influences gastrointestinal integrity and performance.

5.
Front Vet Sci ; 8: 640228, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33644156

RESUMEN

The purpose of the present study was to evaluate the ability of a novel experimental subunit vaccine (ESV), induce colostrum IgA and serum IgG in sows, and to control enterotoxigenic Escherichia coli (ETEC) disease in neonatal and weanling piglets. The vaccine was tested in three experiments. Experiment 1 consisted of two independent trials. In each trial, 20 pregnant sows/groups were vaccinated intramuscularly (IM) with a commercial E. coli vaccine or intranasally with ESV at weeks 11 and 13 of pregnancy. Blood and serum samples were obtained within 12 h post-partum. In Experiment 1, intranasal vaccination with ESV significantly increased the sample-to-positive (S/P) ratio of secretory IgA in the colostrum of sows (P < 0.01, trial 1; P < 0.05, trial 2) compared to the IM vaccine. In Experiment 2, twenty-five 3-day old piglets were randomly allocated into two groups, control (n = 13) or ESV (n = 12) and were oral gavaged with the respective treatments on days 3 and 14 of life. On days 17-19, all piglets were challenged using a mixed ETEC culture via oral gavage. Within 72 h, all control group animals developed disease consistent with colibacillosis. Conversely, the ESV treated group remained disease free over the 7-day observation period and had significant increases in body weight gain compared to the control group piglets. In Experiment 3, thirty 28-day old piglets were randomly allocated, control (n = 15) or ESV (n = 15), and on days 33 and 43 of life, piglets were either given by oral gavage 2.0 mL saline (control group) or 2.0 mL ESV. At days 46 and 47 of life, all pigs were challenged with a mixed culture of ETEC and observed for clinical signs of disease. Results of Experiment 3 were similar to those observed in Experiment 2. This study indicates the ESV can induce better levels of colostrum secretory IgA in pregnant sows than IM vaccination, which may be protective to neonatal piglets. Further, the vaccine can protect piglets as early as 3 days of age from an ETEC infection. Importantly, the data suggest a single vaccine could be used across the farrowing, suckling, and weaning program to protect against pathogenic E. coli.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...