Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 10(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208049

RESUMEN

Human peroxiredoxins (Prx) are a family of antioxidant enzymes involved in a myriad of cellular functions and diseases. During the reaction with peroxides (e.g., H2O2), the typical 2-Cys Prxs change oligomeric structure between higher order (do)decamers and disulfide-linked dimers, with the hyperoxidized inactive state (-SO2H) favoring the multimeric structure of the reduced enzyme. Here, we present a study on the structural requirements for the repair of hyperoxidized 2-Cys Prxs by human sulfiredoxin (Srx) and the relative efficacy of physiological reductants hydrogen sulfide (H2S) and glutathione (GSH) in this reaction. The crystal structure of the toroidal Prx1-Srx complex shows an extended active site interface. The loss of this interface within engineered Prx2 and Prx3 dimers yielded variants more resistant to hyperoxidation and repair by Srx. Finally, we reveal for the first time Prx isoform-dependent use of and potential cooperation between GSH and H2S in supporting Srx activity.

2.
ACS Med Chem Lett ; 12(7): 1116-1123, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34267881

RESUMEN

Both glycolate oxidase (GO) and lactate dehydrogenase A (LDHA) influence the endogenous synthesis of oxalate and are clinically validated targets for treatment of primary hyperoxaluria (PH). We investigated whether dual inhibition of GO and LDHA may provide advantage over single agents in treating PH. Utilizing a structure-based drug design (SBDD) approach, we developed a series of novel, potent, dual GO/LDHA inhibitors. X-ray crystal structures of compound 15 bound to individual GO and LDHA proteins validated our SBDD strategy. Dual inhibitor 7 demonstrated an IC50 of 88 nM for oxalate reduction in an Agxt-knockdown mouse hepatocyte assay. Limited by poor liver exposure, this series of dual inhibitors failed to demonstrate significant PD modulation in an in vivo mouse model. This work highlights the challenges in optimizing in vivo liver exposures for diacid containing compounds and limited benefit seen with dual GO/LDHA inhibitors over single agents alone in an in vitro setting.

3.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 9): 608-615, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31475928

RESUMEN

Yersinia pestis, the causative agent of bubonic plague, is one of the most lethal pathogens in recorded human history. Today, the concern is the possible misuse of Y. pestis as an agent in bioweapons and bioterrorism. Current therapies for the treatment of plague include the use of a small number of antibiotics, but clinical cases of antibiotic resistance have been reported in some areas of the world. Therefore, the discovery of new drugs is required to combat potential Y. pestis infection. Here, the crystal structure of the Y. pestis UDP-glucose pyrophosphorylase (UGP), a metabolic enzyme implicated in the survival of Y. pestis in mouse macrophages, is described at 2.17 Šresolution. The structure provides a foundation that may enable the rational design of inhibitors and open new avenues for the development of antiplague therapeutics.


Asunto(s)
UTP-Glucosa-1-Fosfato Uridililtransferasa/química , Yersinia pestis/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Peste/tratamiento farmacológico , Conformación Proteica
4.
Int J Biol Macromol ; 120(Pt A): 1111-1118, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30172821

RESUMEN

Aminopeptidases catalyze the hydrolysis of amino acids from the N-terminus of protein or peptide substrates. M1 family aminopeptidases are important for the pathogenicity of bacteria and play critical role in many physiological processes such as protein maturation, regulation of peptide hormone levels in humans. Most of the M1 family aminopeptidases reported till date display broad substrates specificity, mostly specific to basic and hydrophobic residues. In the current study we report the discovery of a novel M1 class aminopeptidase from Legionella pneumophila (LePepA), which cleaves only acidic residues. Biochemical and structural studies reveal that the S1 pocket is polar and positively charged. Bioinformatic analysis suggests that such active site is unique to only Legionella species and probably evolved for special needs of the microbe. Given its specific activity, LePepA could be useful in specific biotechnological applications.


Asunto(s)
Ácido Aspártico/química , Antígenos CD13/química , Ácido Glutámico/química , Legionella pneumophila/enzimología , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico , Humanos , Hidrólisis , Legionella pneumophila/patogenicidad , Conformación Proteica , Especificidad por Sustrato
5.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 9): 549-557, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30198887

RESUMEN

The production of high-quality crystals is the main bottleneck in determining the structures of proteins using X-ray crystallography. In addition to being recognized as a very effective solubility-enhancing fusion partner, Escherichia coli maltose-binding protein (MBP) has also been successfully employed as a `fixed-arm' crystallization chaperone in more than 100 cases. Here, it is reported that designed ankyrin-repeat proteins (DARPins) that bind with high affinity to MBP can promote the crystallization of an MBP fusion protein when the fusion protein alone fails to produce diffraction-quality crystals. As a proof of principle, three different co-crystal structures of MBP fused to the catalytic domain of human dual-specificity phosphatase 1 in complex with DARPins are reported.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/química , Proteínas de Unión a Maltosa/química , Chaperonas Moleculares/química , Proteínas Recombinantes de Fusión/química , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
6.
Protein Sci ; 27(2): 561-567, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29052270

RESUMEN

The dual specificity phosphatase DUSP1 was the first mitogen activated protein kinase phosphatase (MKP) to be identified. It dephosphorylates conserved tyrosine and threonine residues in the activation loops of mitogen activated protein kinases ERK2, JNK1 and p38-alpha. Here, we report the crystal structure of the human DUSP1 catalytic domain at 2.49 Å resolution. Uniquely, the protein was crystallized as an MBP fusion protein in complex with a monobody that binds to MBP. Sulfate ions occupy the phosphotyrosine and putative phosphothreonine binding sites in the DUSP1 catalytic domain.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/química , Fosfatasa 1 de Especificidad Dual/metabolismo , Proteínas de Unión a Maltosa/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Fosfotreonina/química , Fosfotirosina/química , Conformación Proteica , Especificidad por Sustrato , Sulfatos/química
7.
Protein Sci ; 24(5): 823-31, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25644575

RESUMEN

Actinonin is a pseudotripeptide that displays a high affinity towards metalloproteases including peptide deformylases (PDFs) and M1 family aminopeptidases. PDF and M1 family aminopeptidases belong to thermolysin-metzincin superfamily. One of the major differences in terms of substrate binding pockets between these families is presence (in M1 aminopeptidases) or absence (in PDFs) of an S1 substrate pocket. The binding mode of actinonin to PDFs has been established previously; however, it is not clear how the actinonin, without a P1 residue, would bind to the M1 aminopeptidases. Here we describe the crystal structure of Escherichia coli aminopeptidase N (ePepN), a model protein of the M1 family aminopeptidases in complex with actinonin. For comparison we have also determined the structure of ePepN in complex with a well-known tetrapeptide inhibitor, amastatin. From the comparison of the actinonin and amastatin ePepN complexes, it is clear that the P1 residue is not critical as long as strong metal chelating head groups, like hydroxamic acid or α-hydroxy ketone, are present. Results from this study will be useful for the design of selective and efficient hydroxamate inhibitors against M1 family aminopeptidases.


Asunto(s)
Antígenos CD13/química , Conformación Proteica , Sitios de Unión , Antígenos CD13/metabolismo , Cristalografía por Rayos X , Escherichia coli/enzimología , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/metabolismo , Unión Proteica
8.
J Med Chem ; 58(5): 2350-7, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25699713

RESUMEN

The methionine aminopeptidase (MetAP) family is responsible for the cleavage of the initiator methionine from newly synthesized proteins. Currently, there are no small molecule inhibitors that show selectivity toward the bacterial MetAPs compared to the human enzyme. In our current study, we have screened 20 α-aminophosphonate derivatives and identified a molecule (compound 15) that selectively inhibits the S. pneumonia MetAP in low micromolar range but not the human enzyme. Further bioinformatics, biochemical, and structural analyses suggested that phenylalanine (F309) in the human enzyme and methionine (M205) in the S. pneumonia MetAP at the analogous position render them with different susceptibilities against the identified inhibitor. X-ray crystal structures of various inhibitors in complex with wild type and F309M enzyme further established the molecular basis for the inhibitor selectivity.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Metionina/química , Metionil Aminopeptidasas/antagonistas & inhibidores , Fenilalanina/química , Streptococcus/enzimología , Secuencia de Aminoácidos , Aminopeptidasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Humanos , Metionil Aminopeptidasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad de la Especie
9.
FEBS J ; 281(18): 4240-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24841365

RESUMEN

Methionine aminopeptidases (MetAPs) cleave initiator methionine from ~ 70% of the newly synthesized proteins in every living cell, and specific inhibition or knockdown of this function is detrimental. MetAPs are metalloenzymes, and are broadly classified into two subtypes, type I and type II. Bacteria contain only type I MetAPs, and the active site of these enzymes contains a conserved cysteine. By contrast, in type II enzymes the analogous position is occupied by a conserved glycine. Here, we report the reactivity of the active site cysteine in a type I MetAP, MetAP1c, of Mycobacterium tuberculosis (MtMetAP1c) towards highly selective cysteine-specific reagents. The authenticity of selective modification of Cys105 of MtMetAP1c was established by using site-directed mutagenesis and crystal structure determination of covalent and noncovalent complexes. On the basis of these observations, we propose that metal ions in the active site assist in the covalent modification of Cys105 by orienting the reagents appropriately for a successful reaction. These studies establish, for the first time, that the conserved cysteine of type I MetAPs can be targeted for selective inhibition, and we believe that this chemistry can be exploited for further drug discovery efforts regarding microbial MetAPs.


Asunto(s)
Proteínas Bacterianas/química , Metionil Aminopeptidasas/química , Mycobacterium tuberculosis/enzimología , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico , Cobalto/química , Secuencia Conservada , Complejos de Coordinación/química , Cristalografía por Rayos X , Cisteína/genética , Metionil Aminopeptidasas/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Alineación de Secuencia
10.
J Med Chem ; 56(13): 5295-305, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23767698

RESUMEN

Methionine aminopeptidases (MetAPs) are essential enzymes that make them good drug targets in cancer and microbial infections. MetAPs remove the initiator methionine from newly synthesized peptides in every living cell. MetAPs are broadly divided into type I and type II classes. Both prokaryotes and eukaryotes contain type I MetAPs, while eukaryotes have additional type II MetAP enzyme. Although several inhibitors have been reported against type I enzymes, subclass specificity is scarce. Here, using the fine differences in the entrance of the active sites of MetAPs from Mycobacterium tuberculosis , Enterococcus faecalis , and human, three hotspots have been identified and pyridinylpyrimidine-based molecules were selected from a commercial source to target these hotspots. In the biochemical evaluation, many of the 38 compounds displayed differential behavior against these three enzymes. Crystal structures of four selected inhibitors in complex with human MetAP1b and molecular modeling studies provided the basis for the binding specificity.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Metionil Aminopeptidasas/antagonistas & inhibidores , Pirimidinas/farmacología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Enterococcus faecalis/enzimología , Enterococcus faecalis/genética , Inhibidores Enzimáticos/química , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Metionil Aminopeptidasas/química , Metionil Aminopeptidasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Unión Proteica , Piridinas/química , Pirimidinas/química , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Estereoisomerismo
11.
Protein Sci ; 21(5): 727-36, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22411732

RESUMEN

Escherichia coli aminopeptidase N (ePepN) belongs to the gluzincin family of M1 class metalloproteases that share a common primary structure with consensus zinc binding motif (HEXXH-(X18)-E) and an exopeptidase motif (GXMEN) in the active site. There is one amino acid, E121 in Domain I that blocks the extended active site grove of the thermolysin like catalytic domain (Domain II) limiting the substrate to S1 pocket. E121 forms a part of the S1 pocket, while making critical contact with the amino-terminus of the substrate. In addition, the carboxylate of E121 forms a salt bridge with K319 in Domain II. Both these residues are absolutely conserved in ePepN homologs. Analogous Glu-Asn pair in tricon interacting factor F3 (F3) and Gln-Asn pair in human leukotriene A(4) hydrolase (LTA(4) H) are also conserved in respective homologs. Mutation of either of these residues individually or together substantially reduced or entirely eliminated enzymatic activity. In addition, thermal denaturation studies suggest that the mutation at K319 destabilizes the protein as much as by 3.7 °C, while E121 mutants were insensitive. Crystal structure of E121Q mutant reveals that the enzyme is inactive due to the reduced S1 subsite volume. Together, data presented here suggests that ePepN, F3, and LTA(4) H homologs adopted a divergent evolution that includes E121-K319 or its analogous pairs, and these cannot be interchanged.


Asunto(s)
Aminopeptidasas/química , Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , Ácido Glutámico/química , Lisina/química , Secuencia de Aminoácidos , Aminopeptidasas/metabolismo , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Proteínas de Escherichia coli/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Filogenia , Desnaturalización Proteica , Ingeniería de Proteínas , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...