Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomedicine (Lond) ; 17(19): 1307-1322, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36255034

RESUMEN

Background: Exosomes are extracellular vesicles with the ability to encapsulate bioactive molecules, such as therapeutics. This study identified a new exosome mediated route of doxorubicin and poly(N-(2-hydroxypropyl)methacrylamide) (pHPMA)-bound doxorubicin trafficking in the tumor mass. Materials & methods: Exosome loading was achieved via incubation of the therapeutics with an adherent human breast adenocarcinoma cell line and its derived spheroids. Exosomes were characterized using HPLC, nanoparticle tracking analysis (NTA) and western blotting. Results: The therapeutics were successfully loaded into exosomes. Spheroids secreted significantly more exosomes than adherent cells and showed decreased viability after treatment with therapeutic-loaded exosomes, which confirmed successful transmission. Conclusion: To the best of our knowledge, this study provides the first evidence of pHPMA-drug conjugate secretion by extracellular vesicles.


Background: In cancer treatment, low-molecular-weight drugs (e.g., doxorubicin [DOX]) with a broad spectrum of side effects are commonly used. Through their conjugation with hydrophilic polymers ­ N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers ­ for example, most of the side effects can be reduced. These drug­polymer conjugates are delivered via bloodstream into the tumor. This study aimed to identify a new exosome-mediated route of DOX and polyHPMA(pHPMA)­DOX conjugates trafficking inside the tumor mass. Exosomes are small lipid membrane vesicles constitutively released from most of the cell types, including the tumor cells. Exosomes are able to encapsulate low-molecular-weight drugs. Methods: Exosomes were loaded with DOX and pHPMA-DOX in vitro via coincubation with cancer cells. Exosomes were isolated from the conditioned-cultivation medium after their release from cells and characterized (size, numbers, protein marker profiles). Results: The therapeutics were successfully loaded into exosomes and transmitted to the tumor cells. To the best of our knowledge, this is the first evidence of the pHPMA­drug conjugate secretion by exosomes.


Asunto(s)
Adenocarcinoma , Exosomas , Humanos , Polímeros , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Adenocarcinoma/tratamiento farmacológico , Línea Celular Tumoral
2.
Life (Basel) ; 12(9)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36143419

RESUMEN

High-quality upconverting NaYF4:Yb3+,Er3+ nanoparticles (UCNPs; 26 nm in diameter) based on lanthanides were synthesized by a high-temperature coprecipitation method. The particles were modified by bisphosphonate-terminated poly(ethylene glycol) (PEG) and Rose Bengal (RB) photosensitizer. The particles were thoroughly characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, FTIR, and X-ray photoelectron and upconversion luminescence spectroscopy in terms of morphology, hydrodynamic size, composition, and energy transfer to the photosensitizer. Moreover, the singlet oxygen generation from RB-containing UCNPs was investigated using 9,10-diphenylanthracene probe under 980 nm excitation. The cytotoxicity of UCNPs before and after conjugation with RB was evaluated on highly sensitive rat mesenchymal stem cells (rMSCs) and significant differences were found. Correspondingly, consi-derable variations in viability were revealed between the irradiated and non-irradiated rat glioma cell line (C6) exposed to RB-conjugated UCNPs. While the viability of rMSCs was not affected by the presence of UCNPs themselves, the cancer C6 cells were killed after the irradiation at 980 nm due to the reactive oxygen species (ROS) production, thus suggesting the potential of RB-conjugated PEG-modified UCNPs for applications in photodynamic therapy of cancer.

3.
Sensors (Basel) ; 22(7)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35408397

RESUMEN

The main task of the research is to acquire fundamental knowledge about the effect of polymer structure on the physicochemical properties of films. A novel meta-material that can be used in manufacturing sensor layers was developed as a model. At the first stage, poly(sodium 4-styrenesulfonate) (PNaSS) cross-linked microspheres are synthesized (which are based on strong polyelectrolytes containing sulfo groups in each monomer unit), and at the second stage, PNaSS@PEDOT microspheres are formed. The poly(3,4-ethylenedioxythiophene) (PEDOT) shell was obtained by the acid-assisted self-polymerization of the monomer; this process is biologically safe and thus suitable for biomedical applications. The suitability of electrochemical impedance spectroscopy for E. coli detection was tested; it was revealed that the attached bacterial wall was destroyed upon application of constant oxidation potential (higher than 0.5 V), which makes the PNaSS@PEDOT microsphere particles promising materials for the development of antifouling coatings. Furthermore, under open-circuit conditions, the walls of E. coli bacteria were not destroyed, which opens up the possibility of employing such meta-materials as sensor films. Scanning electron microscopy, X-ray photoelectron spectroscopy, water contact angle, and wide-angle X-ray diffraction methods were applied in order to characterize the PNaSS@PEDOT films.


Asunto(s)
Escherichia coli , Polímeros , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Microesferas , Polímeros/química
4.
Antibiotics (Basel) ; 10(9)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34572658

RESUMEN

Uniformly sized magnetite nanoparticles (Dn = 16 nm) were prepared by a thermal decomposition of Fe(III) oleate in octadec-1-ene and stabilized by oleic acid. The particles were coated with Sipomer PAM-200 containing both phosphate and methacrylic groups available for the attachment to the iron oxide and at the same time enabling (co)polymerization of 2-(dimethylamino)ethyl methacrylate and/or 2-tert-butylaminoethyl methacrylate at two molar ratios. The poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) and poly[2-(dimethylamino)ethyl methacrylate-co-2-tert-butylaminoethyl methacrylate] [P(DMAEMA-TBAEMA)] polymers and the particles were characterized by 1H NMR spectroscopy, size-exclusion chromatography, transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, magnetometry, and ATR FTIR and atomic absorption spectroscopy. The antimicrobial effect of cationic polymer-coated magnetite nanoparticles tested on both Escherichia coli and Staphylococcus aureus bacteria was found to be time- and dose-responsive. The P(DMAEMA-TBAEMA)-coated magnetite particles possessed superior biocidal properties compared to those of P(DMAEMA)-coated one.

5.
Biomacromolecules ; 21(8): 3122-3133, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32697592

RESUMEN

The development of efficient galectin-3 (Gal-3) inhibitors draws attention in the field of anti-cancer therapy, especially due to the prominent role of extra- and intracellular Gal-3 in vital processes of cancerogenesis, such as immunosuppression, stimulation of tumor cells proliferation, survival, invasion, apoptotic resistance, and metastasis formation and progression. Here, by combining poly-LacNAc (Galß4GlcNAc)-derived oligosaccharides with N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers, we synthesized multivalent glycopolymer inhibitors with a high potential to target extracellular and intracellular Gal-3. The inhibitory capabilities of the best conjugate in the studied series were in the nanomolar range proving the excellent Gal-3 inhibitory potential. Moreover, thorough investigation of the inhibitory effect in the biological conditions showed that the glycopolymers strongly inhibited Gal-3-induced apoptosis of T lymphocytes and suppressed migration and spreading of colorectal, breast, melanoma, and prostate cancer cells. In sum, the strong inhibitory activity toward Gal-3, combined with favorable pharmacokinetics of HPMA copolymers ensuring enhanced tumor accumulation via the enhanced permeability and retention effect, nominate the glycopolymers containing LacdiNAc-LacNAc (GalNAcß4GlcNAcß3Galß4GlcNAc) tetrasaccharide as promising tools for preclinical in anti-cancer therapy evaluation.


Asunto(s)
Apoptosis , Galectina 3 , Línea Celular Tumoral , Movimiento Celular , Humanos , Masculino , Polímeros , Linfocitos T
6.
Macromol Biosci ; 20(5): e1900408, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32174005

RESUMEN

Polymeric drug carriers exhibit excellent properties that advance drug delivery systems. In particular, carriers based on poly(ethylene oxide)-block-poly(ε-caprolactone) are very useful in pharmacokinetics. In addition to their proven biocompatibility, there are several requirements for the efficacy of the polymeric drug carriers after internalization, e.g., nanoparticle behavior, cellular uptake, the rate of degradation, and cellular localization. The introduction of γ-butyrolactone units into the hydrophobic block enables the tuning of the abovementioned properties over a wide range. In this study, a relatively high content of γ-butyrolactone units with a reasonable yield of ≈60% is achieved by anionic ring-opening copolymerization using 1,5,7-triazabicyclo[4.4.0]dec-5-ene as a very efficient catalyst in the nonpolar environment of toluene with an incorporated γ-butyrolactone content of ≈30%. The content of γ-butyrolactone units can be easily modulated according to the feed ratio of the monomers. This method enables control over the rate of degradation so that when the content of γ-butyrolactone increases, the rate of degradation increases. These findings broaden the application possibilities of polyester-polyether-based nanoparticles for biomedical applications, such as drug delivery systems.


Asunto(s)
4-Butirolactona/química , Portadores de Fármacos/química , Poliésteres/química , Polietilenglicoles/química , Polimerizacion , 4-Butirolactona/síntesis química , Animales , Muerte Celular , Línea Celular , Supervivencia Celular , Humanos , Espacio Intracelular/metabolismo , Ratones , Nanopartículas/química , Nanopartículas/ultraestructura , Poliésteres/síntesis química , Polietilenglicoles/síntesis química , Espectroscopía de Protones por Resonancia Magnética
7.
Artículo en Inglés | MEDLINE | ID: mdl-31783486

RESUMEN

The way in which European genetic variants of Anaplasma phagocytophilum circulate in their natural foci and which variants cause disease in humans or livestock remains thus far unclear. Red deer and roe deer are suggested to be reservoirs for some European A. phagocytophilum strains, and Ixodes ricinus is their principal vector. Based on groEL gene sequences, five A. phagocytophilum ecotypes have been identified. Ecotype I is associated with the broadest host range, including strains that cause disease in domestic animals and humans. Ecotype II is associated with roe deer and does not include zoonotic strains. In the present study, questing I. ricinus were collected in urban, pasture, and natural habitats in the Czech Republic, Germany, and Slovakia. A fragment of the msp2 gene of A. phagocytophilum was amplified by real-time PCR in DNA isolated from ticks. Positive samples were further analyzed by nested PCRs targeting fragments of the 16S rRNA and groEL genes, followed by sequencing. Samples were stratified according to the presence/absence of roe deer at the sampling sites. Geographic origin, habitat, and tick stage were also considered. The probability that A. phagocytophilum is a particular ecotype was estimated by a generalized linear model. Anaplasma phagocytophilum was identified by genetic typing in 274 I. ricinus ticks. The majority belonged to ecotype I (63.9%), 28.5% were ecotype II, and both ecotypes were identified in 7.7% of ticks. Ecotype II was more frequently identified in ticks originating from a site with presence of roe deer, whereas ecotype I was more frequent in adult ticks than in nymphs. Models taking into account the country-specific, site-specific, and habitat-specific aspects did not improve the goodness of the fit. Thus, roe deer presence in a certain site and the tick developmental stage are suggested to be the two factors consistently influencing the occurrence of a particular A. phagocytophilum ecotype in a positive I. ricinus tick.


Asunto(s)
Anaplasma phagocytophilum/aislamiento & purificación , Ciervos/microbiología , Ixodes/microbiología , Anaplasma phagocytophilum/genética , Animales , Ecosistema , Ecotipo , Europa (Continente) , Humanos , Ixodes/genética , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...