Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 89(13): 9352-9359, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38872240

RESUMEN

Saturated N-heterocycles are found in numerous bioactive natural products and are prevalent in pharmaceuticals and agrochemicals. While there are many methods for their synthesis, each has its limitations, such as scope and functional group tolerance. Herein, we describe a rhodium-catalyzed transfer hydrogenation of pyridinium salts to access N-(hetero)aryl piperidines. The reaction proceeds via a reductive transamination process, involving the initial formation of a dihydropyridine intermediate via reduction of the pyridinium ion with HCOOH, which is intercepted by water and then hydrolyzed. Subsequent reductive amination with an exogenous (hetero)aryl amine affords an N-(hetero)aryl piperidine. This reductive transamination method thus allows for access of N-(hetero)aryl piperidines from readily available pyridine derivatives, expanding the toolbox of dearomatization and skeletal editing.

2.
Org Biomol Chem ; 20(9): 1794-1827, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35147631

RESUMEN

The enantioselective and diastereoselective hydrogenation of N-heteroaromatic compounds is an efficient strategy to access chirally enriched cyclic heterocycles, which often possess highly bio-active properties. This strategy, however, has only been established in recent times. This is in part due to the challenges of the high stability of the aromatic compounds and the presence of heteroatoms that have the potential to poison the chiral catalysts. Additionally, N-heteroaromatic compounds are a structurally diverse family of substrates, each group showing distinct reactivity in hydrogenation. Advances in recent years have allowed various N-heteroaromatic compounds, including pyridines, indoles, quinolines, isoquinolines, quinoxalines and imidazoles, to be hydrogenated with good to excellent enantioselectivity under appropriate reaction conditions. Transition-metal catalysis, utilising iridium, ruthenium, rhodium, and palladium complexes, has been found to play an important role in this field. More recently, organocatalysis has been shown to be efficient for the hydrogenation of certain N-heteroaromatic compounds. This review provides an analysis of the recent developments in the enantioselective and diastereoselective hydrogenation of N-heteroaromatic compounds. The importance of these molecules and their applications to drug discovery has been highlighted throughout the review.


Asunto(s)
Compuestos Heterocíclicos/síntesis química , Hidrocarburos Aromáticos/síntesis química , Compuestos Heterocíclicos/química , Hidrocarburos Aromáticos/química , Hidrogenación , Estructura Molecular , Estereoisomerismo
3.
J Org Chem ; 82(17): 9160-9170, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28741357

RESUMEN

A new enantioselective catalysis has been developed for the one-step construction of methylene-bridged chiral modules of 1,2- and 1,3-OH and/or NH function(s) from δ- or λ-OH/NHBoc-substituted allylic alcohols and "H2C═O"/"H2C═NBoc". A protonic nucleophile, either in situ-generated CH2OH or CH2NHBoc, is intramolecularly allylated to furnish eight possible 1,2- or 1,3-O,O, -O,N, -N,O, and -N,N chiral modules equipped with an ethenyl group in high yields and enantioselectivities. The utility of this method has been demonstrated in the five-step synthesis of sphingosine.

4.
J Org Chem ; 80(24): 12351-8, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26562067

RESUMEN

We are the first to report the synthesis of a new class of 2-cyanoarylacrylamide (2-CAA) derivatives and observe that the synthesized 2-CAA shows fluorescence properties due to the formation of a dimeric interaction of hydrogen bonds between carbonyl oxygens and amide hydrogens (C═O···H-N-C═O···H-N···); i.e., dimers are linked through dimeric N-H···O hydrogen bonds. The single-crystal X-ray structure shows molecules to be hydrogen-bonded dimers, which further form a parallel stacking arrangement, mediated by significant π-π interactions. The (1)H NMR and fluorescence spectral studies indicate the coexistence of amide and iminol tautomers in solution, which can be influenced by the nature of the solvent. Further, the excitation-wavelength-dependent fluorescence spectrum and the biexponential fluorescence decay profiles suggest the presence of more than one emitting species; i.e., amide and iminol tautomers coexists in solution. We have also shown that the equilibrium between the two tautomers can be tuned by the judicious choice of electron-donating or -withdrawing substituents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA