Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8159, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289341

RESUMEN

Tissues undergo distinct morphogenetic processes to achieve similarly shaped structures. In the heart, cardiomyocytes in both the ventricle and atrium build internal structures for efficient contraction. Ventricular wall formation (trabeculation) is initiated by cardiomyocyte delamination. How cardiomyocytes build the atrial wall is poorly understood. Using longitudinal imaging in zebrafish, we found that at least 25% of the atrial cardiomyocytes elongate along the long axis of the heart. These cell shape changes result in cell intercalation and convergent thickening, leading to the formation of the internal muscle network. We tested factors important for ventricular trabeculation including Nrg/ErbB and Notch signaling and found no evidence for their role in atrial muscle network formation. Instead, our data suggest that atrial cardiomyocyte elongation is regulated by Yap, which has not been implicated in trabeculation. Altogether, these data indicate that distinct cellular and molecular mechanisms build the internal muscle structures in the atrium and ventricle.


Asunto(s)
Atrios Cardíacos , Ventrículos Cardíacos , Miocitos Cardíacos , Proteínas de Pez Cebra , Pez Cebra , Animales , Atrios Cardíacos/metabolismo , Atrios Cardíacos/citología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/citología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Transducción de Señal , Forma de la Célula , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Morfogénesis , Receptores Notch/metabolismo
2.
Nat Commun ; 15(1): 7589, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217144

RESUMEN

The contribution of endocardial cells (EdCs) to the hematopoietic lineages has been strongly debated. Here, we provide evidence that in zebrafish, the endocardium gives rise to and maintains a stable population of hematopoietic cells. Using single-cell sequencing, we identify an endocardial subpopulation expressing enriched levels of hematopoietic-promoting genes. High-resolution microscopy and photoconversion tracing experiments uncover hematopoietic cells, mainly hematopoietic stem and progenitor cells (HSPCs)/megakaryocyte-erythroid precursors (MEPs), derived from EdCs as well as the dorsal aorta stably attached to the endocardium. Emergence of HSPCs/MEPs in hearts cultured ex vivo without external hematopoietic sources, as well as longitudinal imaging of the beating heart using light sheet microscopy, support endocardial contribution to hematopoiesis. Maintenance of these hematopoietic cells depends on the adhesion factors Integrin α4 and Vcam1 but is at least partly independent of cardiac trabeculation or shear stress. Finally, blocking primitive erythropoiesis increases cardiac-residing hematopoietic cells, suggesting that the endocardium is a hematopoietic reservoir. Altogether, these studies uncover the endocardium as a resident tissue for HSPCs/MEPs and a de novo source of hematopoietic cells.


Asunto(s)
Endocardio , Células Madre Hematopoyéticas , Pez Cebra , Animales , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Endocardio/citología , Endocardio/metabolismo , Hematopoyesis/fisiología , Corazón/fisiología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Análisis de la Célula Individual , Linaje de la Célula , Eritropoyesis/fisiología , Animales Modificados Genéticamente
3.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38984541

RESUMEN

The cardiac extracellular matrix (cECM) is fundamental for organ morphogenesis and maturation, during which time it undergoes remodeling, yet little is known about whether mechanical forces generated by the heartbeat regulate this remodeling process. Using zebrafish as a model and focusing on stages when cardiac valves and trabeculae form, we found that altering cardiac contraction impairs cECM remodeling. Longitudinal volumetric quantifications in wild-type animals revealed region-specific dynamics: cECM volume decreases in the atrium but not in the ventricle or atrioventricular canal. Reducing cardiac contraction resulted in opposite effects on the ventricular and atrial ECM, whereas increasing the heart rate affected the ventricular ECM but had no effect on the atrial ECM, together indicating that mechanical forces regulate the cECM in a chamber-specific manner. Among the ECM remodelers highly expressed during cardiac morphogenesis, we found one that was upregulated in non-contractile hearts, namely tissue inhibitor of matrix metalloproteinase 2 (timp2). Loss- and gain-of-function analyses of timp2 revealed its crucial role in cECM remodeling. Altogether, our results indicate that mechanical forces control cECM remodeling in part through timp2 downregulation.


Asunto(s)
Matriz Extracelular , Corazón , Inhibidor Tisular de Metaloproteinasa-2 , Pez Cebra , Animales , Pez Cebra/embriología , Pez Cebra/metabolismo , Matriz Extracelular/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Corazón/embriología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Morfogénesis , Atrios Cardíacos/embriología , Atrios Cardíacos/metabolismo , Fenómenos Biomecánicos , Regulación del Desarrollo de la Expresión Génica , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/embriología
4.
Sci Adv ; 10(20): eadl0633, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38748804

RESUMEN

Biomechanical forces, and their molecular transducers, including key mechanosensitive transcription factor genes, such as KLF2, are required for cardiac valve morphogenesis. However, klf2 mutants fail to completely recapitulate the valveless phenotype observed under no-flow conditions. Here, we identify the transcription factor EGR3 as a conserved biomechanical force transducer critical for cardiac valve formation. We first show that egr3 null zebrafish display a complete and highly penetrant loss of valve leaflets, leading to severe blood regurgitation. Using tissue-specific loss- and gain-of-function tools, we find that during cardiac valve formation, Egr3 functions cell-autonomously in endothelial cells, and identify one of its effectors, the nuclear receptor Nr4a2b. We further find that mechanical forces up-regulate egr3/EGR3 expression in the developing zebrafish heart and in porcine valvular endothelial cells, as well as during human aortic valve remodeling. Altogether, these findings reveal that EGR3 is necessary to transduce the biomechanical cues required for zebrafish cardiac valve morphogenesis, and potentially for pathological aortic valve remodeling in humans.


Asunto(s)
Proteína 3 de la Respuesta de Crecimiento Precoz , Válvulas Cardíacas , Morfogénesis , Proteínas de Pez Cebra , Pez Cebra , Animales , Válvulas Cardíacas/metabolismo , Válvulas Cardíacas/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Morfogénesis/genética , Humanos , Proteína 3 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 3 de la Respuesta de Crecimiento Precoz/genética , Regulación del Desarrollo de la Expresión Génica , Células Endoteliales/metabolismo , Mecanotransducción Celular , Porcinos
5.
Dis Model Mech ; 16(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36172839

RESUMEN

The epicardium, the outermost layer of the heart, is an important regulator of cardiac regeneration. However, a detailed understanding of the crosstalk between the epicardium and myocardium during development requires further investigation. Here, we generated three models of epicardial impairment in zebrafish by mutating the transcription factor genes tcf21 and wt1a, and ablating tcf21+ epicardial cells. Notably, all three epicardial impairment models exhibited smaller ventricles. We identified the initial cause of this phenotype as defective cardiomyocyte growth, resulting in reduced cell surface and volume. This failure of cardiomyocyte growth was followed by decreased proliferation and increased abluminal extrusion. By temporally manipulating its ablation, we show that the epicardium is required to support cardiomyocyte growth mainly during early cardiac morphogenesis. By transcriptomic profiling of sorted epicardial cells, we identified reduced expression of FGF and VEGF ligand genes in tcf21-/- hearts, and pharmacological inhibition of these signaling pathways in wild type partially recapitulated the ventricular growth defects. Taken together, these data reveal distinct roles of the epicardium during cardiac morphogenesis and signaling pathways underlying epicardial-myocardial crosstalk.


Asunto(s)
Miocitos Cardíacos , Pez Cebra , Animales , Pez Cebra/metabolismo , Miocitos Cardíacos/metabolismo , Ligandos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pericardio/metabolismo , Organogénesis/genética , Corazón/fisiología , Miocardio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Elife ; 102021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34152269

RESUMEN

The transcription factor Snai1, a well-known regulator of epithelial-to-mesenchymal transition, has been implicated in early cardiac morphogenesis as well as in cardiac valve formation. However, a role for Snai1 in regulating other aspects of cardiac morphogenesis has not been reported. Using genetic, transcriptomic, and chimeric analyses in zebrafish, we find that Snai1b is required in cardiomyocytes for myocardial wall integrity. Loss of snai1b increases the frequency of cardiomyocyte extrusion away from the cardiac lumen. Extruding cardiomyocytes exhibit increased actomyosin contractility basally as revealed by enrichment of p-myosin and α-catenin epitope α-18, as well as disrupted intercellular junctions. Transcriptomic analysis of wild-type and snai1b mutant hearts revealed the dysregulation of intermediate filament genes, including desmin b (desmb) upregulation. Cardiomyocyte-specific desmb overexpression caused increased cardiomyocyte extrusion, recapitulating the snai1b mutant phenotype. Altogether, these results indicate that Snai1 maintains the integrity of the myocardial epithelium, at least in part by repressing desmb expression.


Asunto(s)
Regulación de la Expresión Génica , Corazón/fisiología , Filamentos Intermedios/genética , Factores de Transcripción de la Familia Snail/genética , Proteínas de Pez Cebra/genética , Pez Cebra/fisiología , Animales , Miocardio/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Curr Opin Cell Biol ; 73: 26-34, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34147705

RESUMEN

The transformation of the heart from a simple tube to a complex organ requires the orchestration of several morphogenetic processes. Two structures critical for cardiac function, the cardiac valves and the trabecular network, are formed through extensive tissue morphogenesis-endocardial cell migration, deadhesion and differentiation into fibroblast-like cells during valve formation, and cardiomyocyte delamination and apico-basal depolarization during trabeculation. Here, we review current knowledge of how these specialized structures acquire their shape by focusing on the underlying cellular behaviors and molecular mechanisms, highlighting findings from in vivo models and briefly discussing the recent advances in cardiac cell culture and organoids.


Asunto(s)
Miocitos Cardíacos , Organogénesis , Movimiento Celular , Válvulas Cardíacas , Morfogénesis
8.
Circ Res ; 126(8): 968-984, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32070236

RESUMEN

RATIONALE: The transcription factor NFATC1 (nuclear factor of activated T-cell 1) has been implicated in cardiac valve formation in humans and mice, but we know little about the underlying mechanisms. To gain mechanistic understanding of cardiac valve formation at single-cell resolution and insights into the role of NFATC1 in this process, we used the zebrafish model as it offers unique attributes for live imaging and facile genetics. OBJECTIVE: To understand the role of Nfatc1 in cardiac valve formation. METHODS AND RESULTS: Using the zebrafish atrioventricular valve, we focus on the valve interstitial cells (VICs), which confer biomechanical strength to the cardiac valve leaflets. We find that initially atrioventricular endocardial cells migrate collectively into the cardiac jelly to form a bilayered structure; subsequently, the cells that led this migration invade the ECM (extracellular matrix) between the 2 endocardial cell monolayers, undergo endothelial-to-mesenchymal transition as marked by loss of intercellular adhesion, and differentiate into VICs. These cells proliferate and are joined by a few neural crest-derived cells. VIC expansion and a switch from a promigratory to an elastic ECM drive valve leaflet elongation. Functional analysis of Nfatc1 reveals its requirement during VIC development. Zebrafish nfatc1 mutants form significantly fewer VICs due to reduced proliferation and impaired recruitment of endocardial and neural crest cells during the early stages of VIC development. With high-speed microscopy and echocardiography, we show that reduced VIC formation correlates with valvular dysfunction and severe retrograde blood flow that persist into adulthood. Analysis of downstream effectors reveals that Nfatc1 promotes the expression of twist1b-a well-known regulator of epithelial-to-mesenchymal transition. CONCLUSIONS: Our study sheds light on the function of Nfatc1 in zebrafish cardiac valve development and reveals its role in VIC formation. It also further establishes the zebrafish as a powerful model to carry out longitudinal studies of valve formation and function.


Asunto(s)
Válvulas Cardíacas/citología , Válvulas Cardíacas/crecimiento & desarrollo , Factores de Transcripción NFATC/fisiología , Organogénesis/fisiología , Animales , Animales Modificados Genéticamente , Movimiento Celular/fisiología , Femenino , Masculino , Ratones , Distribución Aleatoria , Pez Cebra
9.
Dev Cell ; 51(1): 62-77.e5, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31495694

RESUMEN

Mechanical forces regulate cell behavior and tissue morphogenesis. During cardiac development, mechanical stimuli from the heartbeat are required for cardiomyocyte maturation, but the underlying molecular mechanisms remain unclear. Here, we first show that the forces of the contracting heart regulate the localization and activation of the cytoskeletal protein vinculin (VCL), which we find to be essential for myofilament maturation. To further analyze the role of VCL in this process, we examined its interactome in contracting versus non-contracting cardiomyocytes and, in addition to several known interactors, including actin regulators, identified the slingshot protein phosphatase SSH1. We show how VCL recruits SSH1 and its effector, the actin depolymerizing factor cofilin (CFL), to regulate F-actin rearrangement and promote cardiomyocyte myofilament maturation. Overall, our results reveal that mechanical forces generated by cardiac contractility regulate cardiomyocyte maturation through the VCL-SSH1-CFL axis, providing further insight into how mechanical forces are transmitted intracellularly to regulate myofilament maturation.


Asunto(s)
Cofilina 1/metabolismo , Corazón/embriología , Miocitos Cardíacos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Vinculina/metabolismo , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Aminobenzoatos/farmacología , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas de Microfilamentos/metabolismo , Miocardio/metabolismo , Miofibrillas/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Pez Cebra
10.
J Cell Biol ; 218(3): 1039-1054, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30635353

RESUMEN

Elucidating the morphogenetic events that shape vertebrate heart valves, complex structures that prevent retrograde blood flow, is critical to understanding valvular development and aberrations. Here, we used the zebrafish atrioventricular (AV) valve to investigate these events in real time and at single-cell resolution. We report the initial events of collective migration of AV endocardial cells (ECs) into the extracellular matrix (ECM), and their subsequent rearrangements to form the leaflets. We functionally characterize integrin-based focal adhesions (FAs), critical mediators of cell-ECM interactions, during valve morphogenesis. Using transgenes to block FA signaling specifically in AV ECs as well as loss-of-function approaches, we show that FA signaling mediated by Integrin α5ß1 and Talin1 promotes AV EC migration and overall shaping of the valve leaflets. Altogether, our investigation reveals the critical processes driving cardiac valve morphogenesis in vivo and establishes the zebrafish AV valve as a vertebrate model to study FA-regulated tissue morphogenesis.


Asunto(s)
Endocardio/embriología , Adhesiones Focales/metabolismo , Válvulas Cardíacas/embriología , Organogénesis , Transducción de Señal , Pez Cebra/embriología , Animales , Movimiento Celular , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Adhesiones Focales/genética , Integrina alfa5beta1/genética , Integrina alfa5beta1/metabolismo , Talina/genética , Talina/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
Eur Respir J ; 53(3)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30578393

RESUMEN

Epithelial tubes, comprised of polarised epithelial cells around a lumen, are crucial for organ function. However, the molecular mechanisms underlying tube formation remain largely unknown. Here, we report on the function of fibrillin (FBN)2, an extracellular matrix (ECM) glycoprotein, as a critical regulator of tracheal tube formation.We performed a large-scale forward genetic screen in mouse to identify regulators of respiratory organ development and disease. We identified Fbn2 mutants which exhibit shorter and narrowed tracheas as well as defects in tracheal smooth muscle cell alignment and polarity.We found that FBN2 is essential for elastic fibre formation and Fibronectin accumulation around tracheal smooth muscle cells. These processes appear to be regulated at least in part through inhibition of p38-mediated upregulation of matrix metalloproteinases (MMPs), as pharmacological decrease of p38 phosphorylation or MMP activity partially attenuated the Fbn2 mutant tracheal phenotypes. Analysis of human tracheal tissues indicates that a decrease in ECM proteins, including FBN2 and Fibronectin, is associated with tracheomalacia.Our findings provide novel insights into the role of ECM homeostasis in mesenchymal cell polarisation during tracheal tubulogenesis.


Asunto(s)
Matriz Extracelular/metabolismo , Fibrilina-2/metabolismo , Músculo Liso/embriología , Miocitos del Músculo Liso/citología , Tráquea/embriología , Animales , Embrión de Mamíferos , Femenino , Fibrilina-2/genética , Fibronectinas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso/citología , Fenotipo , Fosforilación , Transducción de Señal , Tráquea/citología
12.
Nat Commun ; 9(1): 4600, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389913

RESUMEN

Impaired alveolar formation and maintenance are features of many pulmonary diseases that are associated with significant morbidity and mortality. In a forward genetic screen for modulators of mouse lung development, we identified the non-muscle myosin II heavy chain gene, Myh10. Myh10 mutant pups exhibit cyanosis and respiratory distress, and die shortly after birth from differentiation defects in alveolar epithelium and mesenchyme. From omics analyses and follow up studies, we find decreased Thrombospondin expression accompanied with increased matrix metalloproteinase activity in both mutant lungs and cultured mutant fibroblasts, as well as disrupted extracellular matrix (ECM) remodeling. Loss of Myh10 specifically in mesenchymal cells results in ECM deposition defects and alveolar simplification. Notably, MYH10 expression is downregulated in the lung of emphysema patients. Altogether, our findings reveal critical roles for Myh10 in alveologenesis at least in part via the regulation of ECM remodeling, which may contribute to the pathogenesis of emphysema.


Asunto(s)
Matriz Extracelular/metabolismo , Enfermedades Pulmonares/metabolismo , Cadenas Pesadas de Miosina/deficiencia , Miosina Tipo IIB no Muscular/deficiencia , Secuencia de Aminoácidos , Animales , Regulación hacia Abajo/genética , Enfisema/patología , Etilnitrosourea , Femenino , Enfermedades Pulmonares/patología , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Mesodermo/metabolismo , Ratones Endogámicos C57BL , Mutagénesis/genética , Mutación Missense/genética , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIB no Muscular/química , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo , Organogénesis , Fenotipo , Alveolos Pulmonares/embriología , Alveolos Pulmonares/metabolismo , Regulación hacia Arriba/genética
13.
Development ; 145(14)2018 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30061167

RESUMEN

Cardiomyocyte proliferation is crucial for cardiac growth, patterning and regeneration; however, few studies have investigated the behavior of dividing cardiomyocytes in vivo Here, we use time-lapse imaging of beating hearts in combination with the FUCCI system to monitor the behavior of proliferating cardiomyocytes in developing zebrafish. Confirming in vitro observations, sarcomere disassembly, as well as changes in cell shape and volume, precede cardiomyocyte cytokinesis. Notably, cardiomyocytes in zebrafish embryos and young larvae mostly divide parallel to the myocardial wall in both the compact and trabecular layers, and cardiomyocyte proliferation is more frequent in the trabecular layer. While analyzing known regulators of cardiomyocyte proliferation, we observed that the Nrg/ErbB2 and TGFß signaling pathways differentially affect compact and trabecular layer cardiomyocytes, indicating that distinct mechanisms drive proliferation in these two layers. In summary, our data indicate that, in zebrafish, cardiomyocyte proliferation is essential for trabecular growth, but not initiation, and set the stage to further investigate the cellular and molecular mechanisms driving cardiomyocyte proliferation in vivo.


Asunto(s)
Miocitos Cardíacos/citología , Organogénesis , Pez Cebra/crecimiento & desarrollo , Animales , División Celular , Proliferación Celular , Forma de la Célula , Tamaño de la Célula , Regulación del Desarrollo de la Expresión Génica , Corazón/crecimiento & desarrollo , Ligandos , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
14.
Nat Commun ; 9(1): 2815, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30022023

RESUMEN

Tubulogenesis is essential for the formation and function of internal organs. One such organ is the trachea, which allows gas exchange between the external environment and the lungs. However, the cellular and molecular mechanisms underlying tracheal tube development remain poorly understood. Here, we show that the potassium channel KCNJ13 is a critical modulator of tracheal tubulogenesis. We identify Kcnj13 in an ethylnitrosourea forward genetic screen for regulators of mouse respiratory organ development. Kcnj13 mutants exhibit a shorter trachea as well as defective smooth muscle (SM) cell alignment and polarity. KCNJ13 is essential to maintain ion homeostasis in tracheal SM cells, which is required for actin polymerization. This process appears to be mediated, at least in part, through activation of the actin regulator AKT, as pharmacological increase of AKT phosphorylation ameliorates the Kcnj13-mutant trachea phenotypes. These results provide insight into the role of ion homeostasis in cytoskeletal organization during tubulogenesis.


Asunto(s)
Morfogénesis/genética , Músculo Liso/metabolismo , Miocitos del Músculo Liso/metabolismo , Canales de Potasio de Rectificación Interna/genética , Proteínas Proto-Oncogénicas c-akt/genética , Tráquea/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Polaridad Celular , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Transporte Iónico , Ratones Noqueados , Músculo Liso/citología , Miocitos del Músculo Liso/citología , Fosforilación , Polimerizacion , Canales de Potasio de Rectificación Interna/deficiencia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Tráquea/citología , Tráquea/crecimiento & desarrollo
15.
Nat Commun ; 8: 14495, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28211472

RESUMEN

Tissue integrity is critical for organ formation and function. During heart development, cardiomyocytes differentiate and integrate to form a coherent tissue that contracts synchronously. However, the molecular mechanisms regulating cardiac tissue integrity are poorly understood. Here we show that proteolysis, via the E3 ubiquitin ligase ASB2, regulates cardiomyocyte maturation and tissue integrity. Cardiomyocytes in asb2b zebrafish mutants fail to terminally differentiate, resulting in reduced cardiac contractility and output. Mosaic analyses reveal a cell-autonomous requirement for Asb2b in cardiomyocytes for their integration as asb2b mutant cardiomyocytes are unable to meld into wild-type myocardial tissue. In vitro and in vivo data indicate that ASB2 negatively regulates TCF3, a bHLH transcription factor. TCF3 must be degraded for cardiomyocyte maturation, as TCF3 gain-of-function causes a number of phenotypes associated with cardiomyocyte dedifferentiation. Overall, our results show that proteolysis has an important role in cardiomyocyte maturation and the formation of a coherent myocardial tissue.


Asunto(s)
Miocitos Cardíacos/metabolismo , Organogénesis , Proteolisis , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Animales , Animales Recién Nacidos , Secuencia de Bases , Desdiferenciación Celular , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Ratones , Mutación/genética , Miocitos Cardíacos/patología , Ratas , Pez Cebra/genética
16.
Development ; 140(13): 2808-17, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23720044

RESUMEN

Border cell cluster (BCC) migration in the Drosophila ovary is an excellent system to study the gene regulatory network that enables collective cell migration. Here, we identify the large Maf transcription factor Traffic jam (Tj) as an important regulator of BCC migration. Tj has a multifaceted impact on the known core cascade that enables BCC motility, consisting of the Jak/Stat signaling pathway, the C/EBP factor Slow border cells (Slbo), and the downstream effector DE-cadherin (DEcad). The initiation of BCC migration coincides with a Slbo-dependent decrease in Tj expression. This reduction of Tj is required for normal BCC motility, as high Tj expression strongly impedes migration. At high concentration, Tj has a tripartite negative effect on the core pathway: a decrease in Slbo, an increase in the Jak/Stat inhibitor Socs36E, and a Slbo-independent reduction of DEcad. However, maintenance of a low expression level of Tj in the BCC during migration is equally important, as loss of tj function also results in a significant delay in migration concomitant with a reduction of Slbo and consequently of DEcad. Taken together, we conclude that the regulatory feedback loop between Tj and Slbo is necessary for achieving the correct activity levels of migration-regulating factors to ensure proper BCC motility.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Drosophila/metabolismo , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Oogénesis/fisiología , Ovario/embriología , Proteínas Proto-Oncogénicas/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Movimiento Celular/genética , Movimiento Celular/fisiología , Proteínas de Drosophila/genética , Femenino , Factores de Transcripción Maf de Gran Tamaño/genética , Oogénesis/genética , Ovario/citología , Ovario/metabolismo , Proteínas Proto-Oncogénicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA