Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(33): 21816-21835, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37097706

RESUMEN

Hybrid quantum mechanical/molecular mechanical (QM/MM) methods are a powerful computational tool for the investigation of all forms of catalysis, as they allow for an accurate description of reactions occurring at catalytic sites in the context of a complicated electrostatic environment. The scriptable computational chemistry environment ChemShell is a leading software package for QM/MM calculations, providing a flexible, high performance framework for modelling both biomolecular and materials catalysis. We present an overview of recent applications of ChemShell to problems in catalysis and review new functionality introduced into the redeveloped Python-based version of ChemShell to support catalytic modelling. These include a fully guided workflow for biomolecular QM/MM modelling, starting from an experimental structure, a periodic QM/MM embedding scheme to support modelling of metallic materials, and a comprehensive set of tutorials for biomolecular and materials modelling.

2.
J Phys Chem B ; 127(7): 1674-1687, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36786752

RESUMEN

We present a dissipative particle dynamics (DPD) model capable of capturing the liquid state phase behavior of nonionic surfactants from the alkyl ethoxylate (CnEm) family. The model is based upon our recent work [Anderson et al. J. Chem. Phys. 2017, 147, 094503] but adopts tighter control of the molecular structure by setting the bond angles with guidance from molecular dynamics simulations. Changes to the geometry of the surfactants were shown to have little effect on the predicted micelle properties of sampled surfactants, or the water-octanol partition coefficients of small molecules, when compared to the original work. With these modifications the model is capable of reproducing the binary water-surfactant phase behavior of nine surfactants (C8E4, C8E5, C8E6, C10E4, C10E6, C10E8, C12E6, C12E8, and C12E12) with a good degree of accuracy.

3.
J Chem Theory Comput ; 16(6): 3543-3557, 2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32369352

RESUMEN

Accurately modeling the electronic structure of materials is a persistent challenge to high-throughput screening. A promising means of balancing accuracy against computational cost is non-self-consistent calculations with hybrid density-functional theory, where the electronic band energies are evaluated using a hybrid functional from orbitals obtained with a less demanding (semi)local functional. We have quantified the performance of this technique for predicting the physical properties of 16 tetrahedral semiconductors with bandgaps from 0.2 to 5.5 eV. Provided the base functional predicts a nonmetallic electronic structure, bandgaps within 5% of the PBE0 and HSE06 gaps can be obtained with an order of magnitude reduction in computing time. The positions of the valence and conduction band extrema and the Fermi level are well reproduced, enabling calculation of the band dispersion, density of states, and dielectric properties using Fermi's Golden Rule. While the error in the non-self-consistent total energies is ∼50 meV atom-1, the energy-volume curves are reproduced accurately enough to obtain the equilibrium volume and bulk modulus with minimal error. We also test the dielectric-dependent scPBE0 functional and obtain bandgaps and dielectric constants to within 2.5% of the self-consistent results, which amounts to a significant improvement over self-consistent PBE0 for a similar computational cost. We identify cases where the non-self-consistent approach is expected to perform poorly and demonstrate that partial self-consistency provides a practical and efficient workaround. Finally, we perform proof-of-concept calculations on CoO and NiO to demonstrate the applicability of the technique to strongly correlated open-shell transition-metal oxides.

4.
Chem Mater ; 31(10): 3672-3685, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32063672

RESUMEN

The tin sulfides and selenides have a range of applications spanning photovoltaics and thermoelectrics to photocatalysts and photodetectors. However, significant challenges remain to widespread use, including electrical and chemical incompatibilities between SnS and device contact materials and the environmental toxicity of selenium. Solid solutions of isostructural sulfide and selenide phases could provide scope for optimizing physical properties against sustainability requirements, but this has not been comprehensively explored. This work presents a detailed modeling study of the Pnma and rocksalt Sn(S1-x Se x ), Sn(S1-x Se x )2, and Sn2(S1-x Se x )3 solid solutions. All four show an energetically favorable and homogenous mixing at all compositions, but rocksalt Sn(S1-x Se x ) and Sn2(S1-x Se x )3 are predicted to be metastable and accessible only under certain synthesis conditions. Alloying leads to a predictable variation of the bandgap, density of states, and optical properties with composition, allowing SnS2 to be "tuned down" to the ideal Shockley-Queisser bandgap of 1.34 eV. The impact of forming the solid solutions on the lattice dynamics is also investigated, providing insight into the enhanced performance of Sn(S1-x Se x ) solid solutions for thermoelectric applications. These results demonstrate that alloying affords facile and precise control over the electronic, optical, and vibrational properties, allowing material performance for optoelectronic applications to be optimized alongside a variety of practical considerations.

5.
J Phys Condens Matter ; 26(48): 485011, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-25380292

RESUMEN

We apply bond order and topological methods to the problem of analysing the results of radiation damage cascade simulations in ceramics. Both modified Steinhardt local order and connectivity topology analysis techniques provide results that are both translationally and rotationally invariant and which do not rely on a particular choice of a reference structure. We illustrate the methods with new analyses of molecular dynamics simulations of single cascades in the pyrochlores Gd(2)Ti(2)O(7) and Gd(2)Zr(2)O(7) similar to those reported previously (Todorov et al 2006 J. Phys.: Condens. Matter 18 2217). Results from the Steinhardt and topology analyses are consistent, while often providing complementary information, since the Steinhardt parameters are sensitive to changes in angular arrangement even when the overall topological connectivity is fixed. During the highly non-equilibrium conditions at the start of the cascade, both techniques reveal significant localized transient structural changes and variation in the cation connectivity. After a few picoseconds, the connectivity is largely fixed, while the order parameters continue to change. In the zirconate there is a shift to the anion disordered system while in the titanate there is substantial reversion and healing back to the parent pyrochlore structure.

6.
Phys Chem Chem Phys ; 15(11): 4059-65, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23403641

RESUMEN

Using single-crystal adsorption calorimetry (SCAC) and density functional theory (DFT), the interaction of carbon monoxide on fcc Co{110} is reported for the first time. The results indicate that adsorption is consistent with molecular chemisorption at all coverages. The initial heat of adsorption of 140 kJ mol(-1) is found in the range of heat values calorimetrically measured on other ferromagnetic metal surfaces, such as nickel and iron. DFT adsorption energies are in good agreement with the experimental results, and comparison between SCAC and DFT for CO on other ferromagnetic surfaces is made. The calculated dissociation barrier of 2.03 eV implies that dissociation at 300 K is unlikely even at the lowest coverage. At high coverages during the adsorption-desorption steady state regime, a pre-exponential factor for CO desorption of 1.2 × 10(17) s(-1) is found, implying a localised molecular adsorbed state prior to desorption in contrast to what we found with Ni surfaces. This result highlights the importance of the choice of the pre-exponential factor in evaluating the activation energy for desorption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...