Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomech ; 82: 28-37, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30385003

RESUMEN

The ankle-brachial index (ABI), a ratio of arterial blood pressure in the ankles and upper arms, is used to diagnose and monitor circulatory conditions such as coarctation of the aorta and peripheral artery disease. Computational simulations of the ABI can potentially determine the parameters that produce an ABI indicative of ischemia or other abnormalities in blood flow. However, 0- and 1-D computational methods are limited in describing a 3-D patient-derived geometry. Thus, we present a massively parallel framework for computational fluid dynamics (CFD) simulations in the full arterial system. Using the lattice Boltzmann method to solve the Navier-Stokes equations, we employ highly parallelized and scalable methods to generate the simulation domain and efficiently distribute the computational load among processors. For the first time, we compute an ABI with 3-D CFD. In this proof-of-concept study, we investigate the dependence of ABI on the presence of stenoses, or narrowed regions of the arteries, by directly modifying the arterial geometry. As a result, our framework enables the computation a hemodynamic factor characterizing flow at the scale of the full arterial system, in a manner that is extensible to patient-specific imaging data and holds potential for treatment planning.


Asunto(s)
Índice Tobillo Braquial , Simulación por Computador , Hidrodinámica , Arterias/fisiología , Arterias/fisiopatología , Constricción Patológica/fisiopatología , Hemodinámica , Humanos
2.
Artículo en Inglés | MEDLINE | ID: mdl-23734785

RESUMEN

We have developed the capability to rapidly simulate cardiac electrophysiological phenomena in a human heart discretised at a resolution comparable with the length of a cardiac myocyte. Previous scientific investigation has generally invoked simplified geometries or coarse-resolution hearts, with simulation duration limited to 10s of heartbeats. Using state-of-the-art high-performance computing techniques coupled with one of the most powerful computers available (the 20 PFlop/s IBM BlueGene/Q at Lawrence Livermore National Laboratory), high-resolution simulation of the human heart can now be carried out over 1200 times faster compared with published results in the field. We demonstrate the utility of this capability by simulating, for the first time, the formation of transmural re-entrant waves in a 3D human heart. Such wave patterns are thought to underlie Torsades de Pointes, an arrhythmia that indicates a high risk of sudden cardiac death. Our new simulation capability has the potential to impact a multitude of applications in medicine, pharmaceuticals and implantable devices.


Asunto(s)
Simulación por Computador , Corazón/fisiología , Modelos Cardiovasculares , Arritmias Cardíacas/etiología , Electrocardiografía , Fenómenos Electrofisiológicos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA