Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 79(11): 555, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36251052

RESUMEN

Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), also known as ß-secretase, is an aspartic protease. The sorting of this enzyme into Rab11-positive recycling endosomes regulates the BACE1-mediated cleavage of its substrates, however, the mechanisms underlying this targeting remain poorly understood. The neural cell adhesion molecule 2 (NCAM2) is a substrate of BACE1. We show that BACE1 cleaves NCAM2 in cultured hippocampal neurons and NCAM2-transfected CHO cells. The C-terminal fragment of NCAM2 that comprises the intracellular domain and a small portion of NCAM2's extracellular domain, associates with BACE1. This association is not affected in cells with inhibited endocytosis, indicating that the interaction of NCAM2 and BACE1 precedes the targeting of BACE1 from the cell surface to endosomes. In neurons and CHO cells, this fragment and BACE1 co-localize in Rab11-positive endosomes. Overexpression of full-length NCAM2 or a recombinant NCAM2 fragment containing the transmembrane and intracellular domains but lacking the extracellular domain leads to an increase in BACE1 levels in these organelles. In NCAM2-deficient neurons, the levels of BACE1 are increased at the cell surface and reduced in intracellular organelles. These effects are correlated with increased levels of the soluble extracellular domain of BACE1 in the brains of NCAM2-deficient mice, suggesting increased shedding of BACE1 from the cell surface. Of note, shedding of the extracellular domain of Sez6, a protein cleaved exclusively by BACE1, is reduced in NCAM2-deficient animals. These results indicate that the BACE1-generated fragment of NCAM2 regulates BACE1 activity by promoting the targeting of BACE1 to Rab11-positive endosomes.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Cricetinae , Cricetulus , Endosomas/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo
2.
Mol Neurobiol ; 59(2): 1183-1198, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34958451

RESUMEN

The membrane protein seizure 6-like (SEZ6L) is a neuronal substrate of the Alzheimer's disease protease BACE1, and little is known about its physiological function in the nervous system. Here, we show that SEZ6L constitutive knockout mice display motor phenotypes in adulthood, including changes in gait and decreased motor coordination. Additionally, SEZ6L knockout mice displayed increased anxiety-like behaviour, although spatial learning and memory in the Morris water maze were normal. Analysis of the gross anatomy and proteome of the adult SEZ6L knockout cerebellum did not reveal any major differences compared to wild type, indicating that lack of SEZ6L in other regions of the nervous system may contribute to the phenotypes observed. In summary, our study establishes physiological functions for SEZ6L in regulating motor coordination and curbing anxiety-related behaviour, indicating that aberrant SEZ6L function in the human nervous system may contribute to movement disorders and neuropsychiatric diseases.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Proteínas de la Membrana , Actividad Motora , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Humanos , Aprendizaje por Laberinto , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
3.
Front Immunol ; 12: 607641, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936031

RESUMEN

The Sez6 family consists of Sez6, Sez6L, and Sez6L2. Its members are expressed throughout the brain and have been shown to influence synapse numbers and dendritic morphology. They are also linked to various neurological and psychiatric disorders. All Sez6 family members contain 2-3 CUB domains and 5 complement control protein (CCP) domains, suggesting that they may be involved in complement regulation. We show that Sez6 family members inhibit C3b/iC3b opsonization by the classical and alternative pathways with varying degrees of efficacy. For the classical pathway, Sez6 is a strong inhibitor, Sez6L2 is a moderate inhibitor, and Sez6L is a weak inhibitor. For the alternative pathway, the complement inhibitory activity of Sez6, Sez6L, and Sez6L2 all equaled or exceeded the activity of the known complement regulator MCP. Using Sez6L2 as the representative family member, we show that it specifically accelerates the dissociation of C3 convertases. Sez6L2 also functions as a cofactor for Factor I to facilitate the cleavage of C3b; however, Sez6L2 has no cofactor activity toward C4b. In summary, the Sez6 family are novel complement regulators that inhibit C3 convertases and promote C3b degradation.


Asunto(s)
Convertasas de Complemento C3-C5/metabolismo , Complemento C3b/inmunología , Fibrinógeno/metabolismo , Proteínas de la Membrana/metabolismo , Complemento C3b/metabolismo , Proteínas Inactivadoras de Complemento/genética , Proteínas Inactivadoras de Complemento/metabolismo , Vía Alternativa del Complemento/efectos de los fármacos , Vía Clásica del Complemento/efectos de los fármacos , Expresión Génica , Humanos , Inmunohistoquímica , Proteínas de la Membrana/genética , Proteínas de la Membrana/farmacología , Proteolisis , Proteínas Recombinantes de Fusión
4.
EMBO J ; 39(15): e103457, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32567721

RESUMEN

Seizure protein 6 (SEZ6) is required for the development and maintenance of the nervous system, is a major substrate of the protease BACE1 and is linked to Alzheimer's disease (AD) and psychiatric disorders, but its molecular functions are not well understood. Here, we demonstrate that SEZ6 controls glycosylation and cell surface localization of kainate receptors composed of GluK2/3 subunits. Loss of SEZ6 reduced surface levels of GluK2/3 in primary neurons and reduced kainate-evoked currents in CA1 pyramidal neurons in acute hippocampal slices. Mechanistically, loss of SEZ6 in vitro and in vivo prevented modification of GluK2/3 with the human natural killer-1 (HNK-1) glycan, a modulator of GluK2/3 function. SEZ6 interacted with GluK2 through its ectodomain and promoted post-endoplasmic reticulum transport of GluK2 in the secretory pathway in heterologous cells and primary neurons. Taken together, SEZ6 acts as a new trafficking factor for GluK2/3. This novel function may help to better understand the role of SEZ6 in neurologic and psychiatric diseases.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/metabolismo , Receptores de Ácido Kaínico/metabolismo , Animales , Glicosilación , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Transporte de Proteínas , Receptores de Ácido Kaínico/genética , Receptor de Ácido Kaínico GluK2 , Receptor Kainato GluK3
5.
Neurobiol Learn Mem ; 168: 107139, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31843653

RESUMEN

Memory is thought to be encoded within networks of neurons within the brain, but the identity of the neurons involved and circuits they form have not been described for any memory. Previously, we used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in different regions of the brain which were specifically activated following fear conditioning. This suggested that these populations of neurons form nodes in a network that encodes fear memory. In particular, one population of learning activated neurons was found within a discrete region of the lateral amygdala (LA), a key nucleus required for fear conditioning. In order to provide evidence that this population is directly involved in fear conditioning, we have analysed the expression of a key molecular requirement for fear conditioning in LA, phosphorylated Extracellular Signal Regulated Kinase 1 and 2 (pERK1/2). The only neurons in LA that specifically expressed pERK1/2 following auditory fear conditioning were in the ventrolateral nucleus of the LA (LAvl), in the same discrete region where we found learning specific FTL+ neurons. Double labelling experiments in FTL mice showed that a substantial proportion of the learning activated neurons expressed both pERK1/2 and FTL. These experiments provide clear evidence that the learning specific neurons we identified within LAvl are directly involved in auditory fear conditioning. In addition, learning specific expression of pERK1/2 was found in a dense network of dendrites contained within the border region of the LAvl. This network of dendrites may represent an activated dendritic field involved in fear conditioning in LA.


Asunto(s)
Complejo Nuclear Basolateral/fisiología , Condicionamiento Clásico/fisiología , Miedo/fisiología , Memoria/fisiología , Neuronas/fisiología , Estimulación Acústica , Animales , Complejo Nuclear Basolateral/citología , Dendritas/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones Transgénicos , Neuronas/citología , Fosforilación
6.
Cereb Cortex ; 30(4): 2167-2184, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-31711114

RESUMEN

Seizure-related gene 6 (Sez6), Sez6-Like (Sez6L), and Sez6-Like 2 (Sez6L2) comprise a family of homologous proteins widely expressed throughout the brain that have been linked to neurodevelopmental and psychiatric disorders. Here, we use Sez6 triple knockout (TKO) mice, which lack all three Sez6 family proteins, to demonstrate that Sez6 family proteins regulate dendritic spine structure and cognitive functions, motor learning, and maintenance of motor functions across the lifespan. Compared to WT controls, we found that Sez6 TKO mice had impaired motor learning and their motor coordination was negatively affected from 6 weeks old and declined more rapidly as they aged. Sez6 TKO mice had reduced spine density in the hippocampus and dendritic spines were shifted to more immature morphologies in the somatosensory cortex. Cognitive testing revealed that they had enhanced stress responsiveness, impaired working, and spatial short-term memory but intact spatial long-term memory in the Morris water maze albeit accompanied by a reversal deficit. Our study demonstrates that the lack of Sez6 family proteins results in phenotypes commonly associated with neuropsychiatric disorders making it likely that Sez6 family proteins contribute to the complex etiologies of these disorders.


Asunto(s)
Cognición/fisiología , Espinas Dendríticas/metabolismo , Locomoción/fisiología , Memoria a Corto Plazo/fisiología , Destreza Motora/fisiología , Proteínas del Tejido Nervioso/deficiencia , Animales , Espinas Dendríticas/patología , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética
7.
Pain Rep ; 4(2): e719, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31041421

RESUMEN

INTRODUCTION: Seizure-related protein 6 (Sez6) contributes to chronic pain development as sez6 knockout mice show attenuated pain behaviours after peripheral nerve injury, compared with control mice. The type I transmembrane isoform of Sez6 is cleaved by the ß-amyloid precursor protein cleavage enzyme 1 (BACE1), resulting in Sez6 extracellular domain shedding from the neuron surface. OBJECTIVES: To determine whether this BACE1-shed form of Sez6 can be detected in the cerebrospinal fluid (CSF) and whether Sez6 levels in the CSF are altered in neuropathic pain or chronic inflammatory pain (IP). METHODS: We analysed the CSF samples collected during surgery from patients with chronic neuropathic pain (n = 8) or IP (n = 33), comparing them to the CSF samples from patients with suspected subarachnoid haemorrhage that was subsequently excluded (nonsurgical group, n = 5). Western blots were used to determine the relative Sez6 levels in the CSF from the different patient and nonsurgical comparison groups. RESULTS: The results show that BACE1-shed Sez6 can be readily detected in the CSF by Western blot and that the levels of Sez6 are significantly higher in the IP group than in the nonsurgical comparison group. CONCLUSION: The association between elevated Sez6 levels in the CSF and IP is further evidence for persistent alterations in central nervous system activity in chronic IP conditions.

8.
PLoS One ; 13(7): e0200344, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29979789

RESUMEN

It is intriguing that a rare, inherited lysosomal storage disorder Niemann-Pick type C (NPC) shares similarities with Alzheimer's disease (AD). We have previously reported an enhanced processing of ß-amyloid precursor protein (APP) by ß-secretase (BACE1), a key enzyme in the pathogenesis of AD, in NPC1-null cells. In this work, we characterized regional and temporal expression and processing of the recently identified BACE1 substrates seizure protein 6 (Sez6) and seizure 6-like protein (Sez6L), and APP, in NPC1-/- (NPC1) and NPC1+/+ (wt) mouse brains. We analysed 4-weeks old brains to detect the earliest changes associated with NPC, and 10-weeks of age to identify changes at terminal disease stage. Sez6 and Sez6L were selected due to their predominant cleavage by BACE1, and their potential role in synaptic function that may contribute to presentation of seizures and/or motor impairments in NPC patients. While an enhanced BACE1-cleavage of all three substrates was detected in NPC1 vs. wt-mouse brains at 4-weeks of age, at 10-weeks increased proteolysis by BACE1 was observed for Sez6L in the cortex, hippocampus and cerebellum of NPC1-mice. Interestingly, both APP and Sez6L were found to be expressed in Purkinje neurons and their immunostaining was lost upon Purkinje cell neurodegeneration in 10-weeks old NPC1 mice. Furthermore, in NPC1- vs. wt-mouse primary cortical neurons, both Sez6 and Sez6L showed increased punctuate staining within the endolysosomal pathway as well as increased Sez6L and BACE1-positive puncta. This indicates that a trafficking defect within the endolysosomal pathway may play a key role in enhanced BACE1-proteolysis in NPC disease. Overall, our findings suggest that enhanced proteolysis by BACE1 could be a part of NPC disease pathogenesis. Understanding the basic biology of BACE1 and the functional impact of cleavage of its substrates is important to better evaluate the therapeutic potential of BACE1 against AD and, possibly, NPC disease.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intracelular , Ratones Endogámicos BALB C , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/patología , Proteínas/genética , Proteínas/metabolismo , Proteolisis
9.
Biol Psychiatry ; 83(5): 428-437, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28129943

RESUMEN

BACKGROUND: Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a promising drug target for the treatment of Alzheimer's disease. Prolonged BACE1 inhibition interferes with structural and functional synaptic plasticity in mice, most likely by altering the metabolism of BACE1 substrates. Seizure protein 6 (SEZ6) is predominantly cleaved by BACE1, and Sez6 knockout mice share some phenotypes with BACE1 inhibitor-treated mice. We investigated whether SEZ6 is involved in BACE1 inhibition-induced structural and functional synaptic alterations. METHODS: The function of NB-360, a novel blood-brain barrier penetrant and orally available BACE1 inhibitor, was verified by immunoblotting. In vivo microscopy was applied to monitor the impact of long-term pharmacological BACE1 inhibition on dendritic spines in the cerebral cortex of constitutive and conditional Sez6 knockout mice. Finally, synaptic functions were characterized using electrophysiological field recordings in hippocampal slices. RESULTS: BACE1 enzymatic activity was strongly suppressed by NB-360. Prolonged NB-360 treatment caused a reversible spine density reduction in wild-type mice, but it did not affect Sez6-/- mice. Knocking out Sez6 in a small subset of mature neurons also prevented the structural postsynaptic changes induced by BACE1 inhibition. Hippocampal long-term potentiation was decreased in both chronic BACE1 inhibitor-treated wild-type mice and vehicle-treated Sez6-/- mice. However, chronic NB-360 treatment did not alter long-term potentiation in CA1 neurons of Sez6-/- mice. CONCLUSIONS: Our results suggest that SEZ6 plays an important role in maintaining normal dendritic spine dynamics. Furthermore, SEZ6 is involved in BACE1 inhibition-induced structural and functional synaptic alterations.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
10.
11.
Mol Neurodegener ; 11(1): 67, 2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27716410

RESUMEN

BACKGROUND: The protease BACE1 (beta-site APP cleaving enzyme) is a major drug target in Alzheimer's disease. However, BACE1 therapeutic inhibition may cause unwanted adverse effects due to its additional functions in the nervous system, such as in myelination and neuronal connectivity. Additionally, recent proteomic studies investigating BACE1 inhibition in cell lines and cultured murine neurons identified a wider range of neuronal membrane proteins as potential BACE1 substrates, including seizure protein 6 (SEZ6) and its homolog SEZ6L. METHODS AND RESULTS: We generated antibodies against SEZ6 and SEZ6L and validated these proteins as BACE1 substrates in vitro and in vivo. Levels of the soluble, BACE1-cleaved ectodomain of both proteins (sSEZ6, sSEZ6L) were strongly reduced upon BACE1 inhibition in primary neurons and also in vivo in brains of BACE1-deficient mice. BACE1 inhibition increased neuronal surface levels of SEZ6 and SEZ6L as shown by cell surface biotinylation, demonstrating that BACE1 controls surface expression of both proteins. Moreover, mass spectrometric analysis revealed that the BACE1 cleavage site in SEZ6 is located in close proximity to the membrane, similar to the corresponding cleavage site in SEZ6L. Finally, an improved method was developed for the proteomic analysis of murine cerebrospinal fluid (CSF) and was applied to CSF from BACE-deficient mice. Hereby, SEZ6 and SEZ6L were validated as BACE1 substrates in vivo by strongly reduced levels in the CSF of BACE1-deficient mice. CONCLUSIONS: This study demonstrates that SEZ6 and SEZ6L are physiological BACE1 substrates in the murine brain and suggests that sSEZ6 and sSEZ6L levels in CSF are suitable markers to monitor BACE1 inhibition in mice.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Animales , Biomarcadores/líquido cefalorraquídeo , Western Blotting , Inmunohistoquímica , Espectrometría de Masas , Ratones , Ratones Noqueados , Especificidad por Sustrato
12.
Sci Rep ; 6: 29514, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27404227

RESUMEN

Copy number variations to chromosome 21 (HSA21) cause intellectual disability and Down Syndrome, but our understanding of the HSA21 genetic factors which contribute to fetal brain development remains incomplete. Here, we focussed on the neurodevelopmental functions for EURL (also known as C21ORF91, Refseq Gene ID:54149), a protein-coding gene at the centromeric boundary of the Down Syndrome Critical Region (DSCR) of HSA21. We report that EURL is expressed during human and mouse cerebral cortex development, and we report that alterations to EURL mRNA levels within the human brain underlie Down Syndrome. Our gene perturbation studies in mice demonstrate that disruptions to Eurl impair progenitor proliferation and neuronal differentiation. Also, we find that disruptions to Eurl impair the long-term positioning and dendritic spine densities of cortical projection neurons. We provide evidence that EURL interacts with the coiled-coil domain-containing protein CCDC85B so as to modulate ß-catenin levels in cells. Further, we utilised a fluorescent reporter (8xTOPFLASHd2EGFP) to demonstrate that disruptions to Eurl alter ß-catenin signalling in vitro as well as in vivo. Together, these studies highlight EURL as an important new player in neuronal development that is likely to impact on the neuropathogenesis of HSA21-related disorders including Down Syndrome.


Asunto(s)
Corteza Cerebral/embriología , Cromosomas Humanos Par 21/genética , Síndrome de Down/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Variaciones en el Número de Copia de ADN/genética , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Síndrome de Down/metabolismo , Síndrome de Down/patología , Humanos , Discapacidad Intelectual/genética , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas Represoras/metabolismo , beta Catenina/metabolismo
13.
J Mol Neurosci ; 60(3): 305-315, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27456313

RESUMEN

Inhibition of the protease ß-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is a promising treatment strategy for Alzheimer's disease, and a number of BACE inhibitors are currently progressing through clinical trials. The strategy aims to decrease production of amyloid-ß (Aß) peptide from the amyloid precursor protein (APP), thus reducing or preventing Aß toxicity. Over the last decade, it has become clear that BACE1 proteolytically cleaves a number of substrates in addition to APP. These substrates are not known to be involved in the pathogenesis of Alzheimer's disease but have other roles in the developing and/or mature central nervous system. Consequently, BACE inhibition and knockout in mice results in synaptic and other neuronal dysfunctions and the key substrates responsible for these deficits are still being elucidated. Of the BACE1 substrates that have been validated to date, a number may contribute to the synaptic deficits seen with BACE blockade, including neuregulin 1, close homologue of L1 and seizure-related gene 6. It is important to understand the impact that BACE blockade may have on these substrates and other proteins detected in substrate screens and, if necessary, develop substrate-selective BACE inhibitors.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Sinapsis/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Encéfalo/metabolismo , Humanos , Proteolisis , Sinapsis/fisiología
14.
Learn Mem ; 22(8): 370-84, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26179231

RESUMEN

Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in amygdala and hypothalamus, which were specifically activated by fear conditioning to a context. Here we have examined neuronal activation due to fear conditioning to a more specific auditory cue. Discrete populations of learning-specific neurons were identified in only a small number of locations in the brain, including those previously found to be activated in amygdala and hypothalamus by context fear conditioning. These populations, each containing only a relatively small number of neurons, may be directly involved in fear learning and memory.


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo/fisiología , Hipotálamo/fisiología , Memoria/fisiología , Neuronas/fisiología , Tabique del Cerebro/fisiología , Estimulación Acústica , Animales , Apoferritinas/metabolismo , Percepción Auditiva/fisiología , Recuento de Células , Condicionamiento Psicológico/fisiología , Señales (Psicología) , Electrochoque , Ratones
15.
J Mol Cell Biol ; 7(2): 119-31, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25801959

RESUMEN

Pten controls a signaling axis that is implicated to regulate cell proliferation, growth, survival, migration, and metabolism. The molecular mechanisms underlying the specificity of Pten responses to such diverse cellular functions are currently poorly understood. Here we report the control of Pten activity and signaling specificity during the cell cycle by Ndfip1 regulation of Pten spatial distribution. Genetic deletion of Ndfip1 resulted in a loss of Pten nuclear compartmentalization and increased cell proliferation, despite cytoplasmic Pten remaining active in regulating PI3K/Akt signaling. Cells lacking nuclear Pten were found to have dysregulated levels of Plk1 and cyclin D1 that could drive cell proliferation. In vivo, transgene expression of Ndfip1 in the developing brain increased nuclear Pten and lengthened the cell cycle of neuronal progenitors, resulting in microencephaly. Our results show that local partitioning of Pten from the cytoplasm to the nucleus represents a key mechanism contributing to the specificity of Pten signaling during cell proliferation.


Asunto(s)
Proteínas Portadoras/fisiología , Proliferación Celular , Proteínas de la Membrana/fisiología , Fosfohidrolasa PTEN/metabolismo , Transporte Activo de Núcleo Celular , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Ciclina D1/metabolismo , Femenino , Indazoles/farmacología , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Microcefalia/metabolismo , Células PC12 , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Ratas , Transducción de Señal , Sirolimus/farmacología , Sulfonamidas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Quinasa Tipo Polo 1
16.
Hum Mol Genet ; 23(19): 5147-58, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24833723

RESUMEN

The microtubule cytoskeleton is critical for the generation and maturation of neurons in the developing mammalian nervous system. We have previously shown that mutations in the ß-tubulin gene TUBB5 cause microcephaly with structural brain abnormalities in humans. While it is known that TUBB5 is necessary for the proper generation and migration of neurons, little is understood of the role it plays in neuronal differentiation and connectivity. Here, we report that perturbations to TUBB5 disrupt the morphology of cortical neurons, their neuronal complexity, axonal outgrowth, as well as the density and shape of dendritic spines in the postnatal murine cortex. The features we describe are consistent with defects in synaptic signaling. Cellular-based assays have revealed that TUBB5 substitutions have the capacity to alter the dynamic properties and polymerization rates of the microtubule cytoskeleton. Together, our studies show that TUBB5 is essential for neuronal differentiation and dendritic spine formation in vivo, providing insight into the underlying cellular pathology associated with TUBB5 disease states.


Asunto(s)
Diferenciación Celular/genética , Corteza Cerebral/metabolismo , Espinas Dendríticas/metabolismo , Mutación , Neuronas/citología , Neuronas/metabolismo , Tubulina (Proteína)/genética , Animales , Axones/metabolismo , Corteza Cerebral/embriología , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Reporteros , Ratones , Microtúbulos/química , Microtúbulos/metabolismo , Neuronas/patología , Multimerización de Proteína , Interferencia de ARN
17.
J Vis Exp ; (84): e51139, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24561550

RESUMEN

In order to demonstrate the cell-surface localization of a putative transmembrane receptor in cultured neurons, we labeled the protein on the surface of live neurons with a specific primary antibody raised against an extracellular portion of the protein. Given that receptors are trafficked to and from the surface, if cells are permeabilized after fixation then both cell-surface and internal protein will be detected by the same labeled secondary antibody. Here, we adapted a method used to study protein trafficking ("antibody feeding") to differentially label protein that had been internalized by endocytosis during the antibody incubation step and protein that either remained on the cell surface or was trafficked to the surface during this period. The ability to distinguish these two pools of protein was made possible through the incorporation of an overnight blocking step with highly-concentrated unlabeled secondary antibody after an initial incubation of unpermeabilized neurons with a fluorescently-labeled secondary antibody. After the blocking step, permeabilization of the neurons allowed detection of the internalized pool with a fluorescent secondary antibody labeled with a different fluorophore. Using this technique we were able to obtain important information about the subcellular location of this putative receptor, revealing that it was, indeed, trafficked to the cell-surface in neurons. This technique is broadly applicable to a range of cell types and cell-surface proteins, providing a suitable antibody to an extracellular epitope is available.


Asunto(s)
Técnica del Anticuerpo Fluorescente/métodos , Proteínas del Tejido Nervioso/análisis , Neuronas/química , Receptores de Superficie Celular/análisis , Animales , Especificidad de Anticuerpos , Células Cultivadas , Epítopos/análisis , Epítopos/inmunología , Hipocampo/citología , Hipocampo/inmunología , Proteínas del Tejido Nervioso/inmunología , Neuronas/inmunología , Ratas , Receptores de Superficie Celular/inmunología
18.
Exp Neurol ; 252: 37-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24275527

RESUMEN

There is controversy whether accumulation of the tumor suppressor PTEN protein in the cell nucleus under stress conditions such as trauma and stroke causes cell death. A number of in vitro studies have reported enhanced apoptosis in neurons possessing nuclear PTEN, with the interpretation that its nuclear phosphatase activity leads to reduction of the survival protein phospho-Akt. However, there have been no in vivo studies to show that nuclear PTEN in neurons under stress is detrimental. Using a mouse model of injury, we demonstrate here that brain trauma altered the nucleo-cytoplasmic distribution of Pten, resulting in increased nuclear Pten but only in surviving neurons near the lesion. This event was driven by Ndfip1, an adaptor and activator of protein ubiquitination by Nedd4 E3 ligases. Neurons next to the lesion with nuclear PTEN were invariably negative for TUNEL, a marker for cell death. These neurons also showed increased Ndfip1 which we previously showed to be associated with neuron survival. Biochemical assays revealed that overall levels of Pten in the affected cortex were unchanged after trauma, suggesting that Pten abundance globally had not increased but rather Pten subcellular location in affected neurons had changed. Following experimental injury, the number of neurons with nuclear Pten was reduced in heterozygous mice (Ndfip1(+/-)) although lesion volumes were increased. We conclude that nuclear trafficking of Pten following injury leads to neuron survival not death.


Asunto(s)
Lesiones Encefálicas/patología , Núcleo Celular/metabolismo , Regulación de la Expresión Génica/fisiología , Neuronas , Fosfohidrolasa PTEN/metabolismo , Análisis de Varianza , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Apoptosis/fisiología , Proteínas Portadoras/genética , Supervivencia Celular/genética , Citoplasma , Modelos Animales de Enfermedad , Lateralidad Funcional , Inmunoprecipitación , Etiquetado Corte-Fin in Situ , Péptidos y Proteínas de Señalización Intercelular , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Neuronas/ultraestructura , Proteína Oncogénica v-akt , Fosfohidrolasa PTEN/genética , Transporte de Proteínas/genética
19.
Cereb Cortex ; 24(12): 3289-300, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23897647

RESUMEN

Ubiquitin ligases of the Nedd4 family are important for axon and dendrite development, but little is known about their adaptor, Nedd4 family-interacting protein 1 (Ndfip1), that is responsible for their enzymatic activation. To study the function of Ndfip1 in cortical development, we generated a conditional knock-out (conditional KO) in neurons. The Ndfip1 conditional KO mice were viable; however, cortical neurons in the adult brain exhibited atrophic characteristics, including stunted dendritic arbors, blebbing of dendrites, and fewer dendritic spines. In electron micrographs, these neurons appeared shrunken with compacted somata and involutions of the nuclear membrane. In culture, Ndfip1 KO neurons exhibited exuberant sprouting suggesting loss of developmental control. Biochemical analysis of postsynaptic density (PSD) fractions from Ndfip1 KO cortical and hippocampal neurons showed that the postsynaptic proteins (Arc and PSD-95) were reduced compared with wild-type controls. In addition, the PI3 kinase/Akt signaling pathway was altered. These results indicate that Ndfip1, through its Nedd4 effectors, is important for the development of dendrites and dendritic spines in the cortex.


Asunto(s)
Proteínas Portadoras/genética , Espinas Dendríticas/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de la Membrana/genética , Neocórtex , Células Piramidales/diagnóstico por imagen , Animales , Animales Recién Nacidos , Fraccionamiento Celular , Células Cultivadas , Homólogo 4 de la Proteína Discs Large , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Guanilato-Quinasas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neocórtex/citología , Neocórtex/embriología , Neocórtex/crecimiento & desarrollo , Nestina/genética , Nestina/metabolismo , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección , Ultrasonografía
20.
Neurosci Lett ; 555: 225-30, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24036464

RESUMEN

During development, protein substrates need to be removed and degraded when they are no longer required. The E3 ubiquitin ligases, including Nedd4 family proteins, are a major group of enzymes responsible for adding ubiquitin chains to protein substrates prior to their degradation. Ndfip1 (Nedd4 family-interacting protein 1) is an adaptor and activator for Nedd4-family ubiquitin ligases for increasing substrate specificity. To study Nedd4-mediated ubiquitination during cortical development, we have mapped the spatio-temporal dynamics of Ndfip1 protein expression by immunocytochemistry. Ndfip1 expression was observed from embryonic day 11 (E11.5) until adult stages. Its presence increased during the postnatal stages and peaked at postnatal day 7 (P7). Spatially, Ndfip1 was found in the ventricular and marginal zones during corticogenesis but also in the cortical plate and subplate during midstage cortical development (E15.5). Postnatally, Ndfip1 was expressed in all cortical neurons (but not in glial cells) and this expression was both ubiquitous and uniform across cortical layers involving both pyramidal and non-pyramidal neurons. This consistent but dynamic pattern of Ndfip1 expression in temporal and spatial domains of the cortical landscape is indicative of complex programs of protein ubiquitination during corticogenesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Corteza Cerebral/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular , Interneuronas/metabolismo , Ratones , Ratones Endogámicos C57BL , Morfogénesis , Ubiquitina-Proteína Ligasas Nedd4 , Células Piramidales/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...