Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 935: 173365, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38777066

RESUMEN

We hypothesize that aquatic ecosystem services are likely to be inequitably accessible and addressing this hypothesis requires systematic assessment at regional and national scales. We used existing data from large-scale aquatic monitoring programs (National Coastal Condition Assessment, National Lakes Assessment) to examine relationships between ecosystem condition, approximating a subset of cultural and provisioning services, and inequality (population below poverty level, minority population). We also assessed whether monitoring sites equitably represented the gradient of socioeconomic backgrounds. Several water quality indicators were associated with significantly different minority and low-income percentages; however, the effect size was generally small, with the exception of nitrogen condition status. Minority communities were somewhat under-represented when comparing the distribution of all census blocks to those in proximity to monitoring sites. Analyses were sensitive to the skewed distribution of monitoring sites with a low frequency of observations at the more socially vulnerable part of the gradient. We discuss implications of these findings for improving the representation of vulnerable communities in large-scale monitoring programs.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Factores Socioeconómicos , Monitoreo del Ambiente/métodos , Calidad del Agua , Conservación de los Recursos Naturales/métodos , Lagos
2.
Sci Adv ; 8(26): eabo5174, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35767619

RESUMEN

Coastal wetlands are not only among the world's most valued ecosystems but also among the most threatened by high greenhouse gas emissions that lead to accelerated sea level rise. There is intense debate regarding the extent to which landward migration of wetlands might compensate for seaward wetland losses. By integrating data from 166 estuaries across the conterminous United States, we show that landward migration of coastal wetlands will transform coastlines but not counter seaward losses. Two-thirds of potential migration is expected to occur at the expense of coastal freshwater wetlands, while the remaining one-third is expected to occur at the expense of valuable uplands, including croplands, forests, pastures, and grasslands. Our analyses underscore the need to better prepare for coastal transformations and net wetland loss due to rising seas.

3.
Glob Chang Biol ; 28(10): 3236-3245, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35239211

RESUMEN

Coastal marshes are globally important, carbon dense ecosystems simultaneously maintained and threatened by sea-level rise. Warming temperatures may increase wetland plant productivity and organic matter accumulation, but temperature-modulated feedbacks between productivity and decomposition make it difficult to assess how wetlands and their thick, organic-rich soils will respond to climate warming. Here, we actively increased aboveground plant-surface and belowground soil temperatures in two marsh plant communities, and found that a moderate amount of warming (1.7°C above ambient temperatures) consistently maximized root growth, marsh elevation gain, and belowground carbon accumulation. Marsh elevation loss observed at higher temperatures was associated with increased carbon mineralization and increased microtopographic heterogeneity, a potential early warning signal of marsh drowning. Maximized elevation and belowground carbon accumulation for moderate warming scenarios uniquely suggest linkages between metabolic theory of individuals and landscape-scale ecosystem resilience and function, but our work indicates nonpermanent benefits as global temperatures continue to rise.


Asunto(s)
Ecosistema , Humedales , Carbono , Humanos , Suelo , Temperatura
4.
Ecol Evol ; 10(2): 662-677, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32015834

RESUMEN

Understanding habitat associations is vital for conservation of at-risk marsh-endemic wildlife species, particularly those under threat from sea level rise. We modeled environmental and habitat associations of the marsh-endemic, Federally endangered salt marsh harvest mouse (Reithrodontomys raviventris, RERA) and co-occurrence with eight associated small mammal species from annual trap data, 1998-2014, in six estuarine marshes in North San Francisco Bay, California. Covariates included microhabitat metrics of elevation and vegetation species and cover; and landscape metrics of latitude-longitude, distance to anthropogenic features, and habitat patch size. The dominant cover was pickleweed (Salicornia pacifica) with 86% mean cover and 37 cm mean height, and bare ground with about 10% mean cover. We tested 38 variants of Bayesian network (BN) models to determine covariates that best account for presence of RERA and of all nine small mammal species. Best models had lowest complexity and highest classification accuracy. Among RERA presence models, three best BN models used covariates of latitude-longitude, distance to paved roads, and habitat patch size, with 0% error of false presence, 20% error of false nonpresence, and 20% overall error. The all-species presence models suggested that within the pickleweed marsh environment, RERA are mostly habitat generalists. Accounting for presence of other species did not improve prediction of RERA. Habitat attributes compared between RERA and the next most frequently captured species, California vole (Microtus californicus), suggested substantial habitat overlap, with RERA habitat being somewhat higher in marsh elevation, greater in percent cover of the dominant plant species, closer to urban areas, further from agricultural areas, and, perhaps most significant, larger in continuous size of marsh patch. Findings will inform conservation management of the marsh environment for RERA by identifying best microhabitat elements, landscape attributes, and adverse interspecific interactions.

5.
Nat Commun ; 8: 15811, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28598430

RESUMEN

A declining rate of recovery following disturbance has been proposed as an important early warning for impending tipping points in complex systems. Despite extensive theoretical and laboratory studies, this 'critical slowing down' remains largely untested in the complex settings of real-world ecosystems. Here, we provide both observational and experimental support of critical slowing down along natural stress gradients in tidal marsh ecosystems. Time series of aerial images of European marsh development reveal a consistent lengthening of recovery time as inundation stress increases. We corroborate this finding with transplantation experiments in European and North American tidal marshes. In particular, our results emphasize the power of direct observational or experimental measures of recovery over indirect statistical signatures, such as spatial variance or autocorrelation. Our results indicate that the phenomenon of critical slowing down can provide a powerful tool to probe the resilience of natural ecosystems.


Asunto(s)
Aster/crecimiento & desarrollo , Ecosistema , Poaceae/crecimiento & desarrollo , Europa (Continente) , América del Norte , Agua de Mar/química , Humedales
6.
Conserv Biol ; 31(2): 278-289, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27346847

RESUMEN

Climate-change induced uncertainties in future spatial patterns of conservation-related outcomes make it difficult to implement standard conservation-planning paradigms. A recent study translates Markowitz's risk-diversification strategy from finance to conservation settings, enabling conservation agents to use this diversification strategy for allocating conservation and restoration investments across space to minimize the risk associated with such uncertainty. However, this method is information intensive and requires a large number of forecasts of ecological outcomes associated with possible climate-change scenarios for carrying out fine-resolution conservation planning. We developed a technique for iterative, spatial portfolio analysis that can be used to allocate scarce conservation resources across a desired level of subregions in a planning landscape in the absence of a sufficient number of ecological forecasts. We applied our technique to the Prairie Pothole Region in central North America. A lack of sufficient future climate information prevented attainment of the most efficient risk-return conservation outcomes in the Prairie Pothole Region. The difference in expected conservation returns between conservation planning with limited climate-change information and full climate-change information was as large as 30% for the Prairie Pothole Region even when the most efficient iterative approach was used. However, our iterative approach allowed finer resolution portfolio allocation with limited climate-change forecasts such that the best possible risk-return combinations were obtained. With our most efficient iterative approach, the expected loss in conservation outcomes owing to limited climate-change information could be reduced by 17% relative to other iterative approaches.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , América Central , Clima , Predicción , Humanos , América del Norte
7.
PLoS One ; 11(2): e0149937, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26914333

RESUMEN

We assessed the impact of nutrient additions on greenhouse gas fluxes using dark static chambers in a microtidal and a macrotidal marsh along the coast of New Brunswick, Canada approximately monthly over a year. Both were experimentally fertilized for six years with varying levels of N and P. For unfertilized, N and NPK treatments, average yearly CO2 emissions (which represent only respiration) at the microtidal marsh (13, 19, and 28 mmoles CO2 m(-2) hr(-1), respectively) were higher than at the macrotidal marsh (12, 15, and 19 mmoles m(-2) hr(-1), respectively, with a flux under the additional high N/low P treatment of 21 mmoles m(-2) hr(-1)). Response of CH4 to fertilization was more variable. At the macrotidal marsh average yearly fluxes were 1.29, 1.26, and 0.77 µmol CH4 m(-2) hr(-1) with control, N, and NPK treatments, respectively and 1.21 µmol m(-2) hr(-1) under high N/low P treatment. At the microtidal marsh CH4 fluxes were 0.23, 0.16, and -0.24 µmol CH4 m(-2) hr(-1) in control, N, and NPK and treatments, respectively. Fertilization changed soils from sinks to sources of N2O. Average yearly N2O fluxes at the macrotidal marsh were -0.07, 0.08, and 1.70, µmol N2O m(-2) hr(-1) in control, N, NPK and treatments, respectively and 0.35 µmol m(-2) hr(-1) under high N/low P treatment. For the control, N, and NPK treatments at the microtidal marsh N2O fluxes were -0.05, 0.30, and 0.52 µmol N2O m(-2) hr(-1), respectively. Our results indicate that N2O fluxes are likely to vary with the source of pollutant nutrients but emissions will be lower if N is not accompanied by an adequate supply of P (e.g., atmospheric deposition vs sewage or agricultural runoff). With chronic fertilization the global warming potential of the increased N2O emissions may be enough to offset the global cooling potential of the C sequestered by salt marshes.


Asunto(s)
Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Fertilizantes/efectos adversos , Efecto Invernadero , Metano/análisis , Óxido Nitroso/análisis , Agricultura/métodos , Conservación de los Recursos Naturales , Ambiente , Monitoreo del Ambiente , Nuevo Brunswick , Humedales
8.
Nature ; 526(7574): 559-63, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26466567

RESUMEN

Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world's mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.


Asunto(s)
Altitud , Avicennia/fisiología , Bosques , Rhizophoraceae/fisiología , Agua de Mar/análisis , Humedales , Cambio Climático/estadística & datos numéricos , Sedimentos Geológicos/análisis , Océano Índico , Océano Pacífico , Suelo
9.
Ecol Evol ; 3(10): 3471-82, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24223283

RESUMEN

The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946-1975; 1976-2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.

10.
Ecol Appl ; 17(2): 527-40, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17489257

RESUMEN

Wetlands of the Prairie Pothole Region exist in a matrix of grassland dominated by intensive pastoral and cultivation agriculture. Recent conservation management has emphasized the conversion of cultivated farmland and degraded pastures to intact grassland to improve upland nesting habitat. The consequences of changes in land-use cover that alter watershed processes have not been evaluated relative to their effect on the water budgets and vegetation dynamics of associated wetlands. We simulated the effect of upland agricultural practices on the water budget and vegetation of a semipermanent prairie wetland by modifying a previously published mathematical model (WETSIM). Watershed cover/land-use practices were categorized as unmanaged grassland (native grass, smooth brome), managed grassland (moderately heavily grazed, prescribed burned), cultivated crops (row crop, small grain), and alfalfa hayland. Model simulations showed that differing rates of evapotranspiration and runoff associated with different upland plant-cover categories in the surrounding catchment produced differences in wetland water budgets and linked ecological dynamics. Wetland water levels were highest and vegetation the most dynamic under the managed-grassland simulations, while water levels were the lowest and vegetation the least dynamic under the unmanaged-grassland simulations. The modeling results suggest that unmanaged grassland, often planted for waterfowl nesting, may produce the least favorable wetland conditions for birds, especially in drier regions of the Prairie Pothole Region. These results stand as hypotheses that urgently need to be verified with empirical data.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Modelos Biológicos , Agua , Agricultura , South Dakota , Factores de Tiempo
11.
Am J Bot ; 93(12): 1784-90, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21642124

RESUMEN

An invasive variety of Phragmites australis (Poaceae, common reed), the M haplotype, has been implicated in the spread of this species into North American salt marshes that are normally dominated by the salt marsh grass Spartina alterniflora (Poaceae, smooth cordgrass). In some European marshes, on the other hand, Spartina spp. derived from S. alterniflora have spread into brackish P. australis marshes. In both cases, the non-native grass is thought to degrade the habitat value of the marsh for wildlife, and it is important to understand the physiological processes that lead to these species replacements. We compared the growth, salt tolerance, and osmotic adjustment of M haplotype P. australis and S. alterniflora along a salinity gradient in greenhouse experiments. Spartina alterniflora produced new biomass up to 0.6 M NaCl, whereas P. australis did not grow well above 0.2 M NaCl. The greater salt tolerance of S. alterniflora compared with P. australis was due to its ability to use Na(+) for osmotic adjustment in the shoots. On the other hand, at low salinities P. australis produced more shoots per gram of rhizome tissue than did S. alterniflora. This study illustrates how ecophysiological differences can shift the competitive advantage from one species to another along a stress gradient. Phragmites australis is spreading into North American coastal marshes that are experiencing reduced salinities, while Spartina spp. are spreading into northern European brackish marshes that are experiencing increased salinities as land use patterns change on the two continents.

12.
Oecologia ; 90(3): 429-434, 1992 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28313532

RESUMEN

The objective of this study was to examine the claim that traditional measures of competitive performance in substitutive experiments are biased towards larger plants. Results from a three-year diallele experiment of 6 marsh plant species were analyzed using both Relative Yields (a traditional analysis) and the Relative Efficiency Index (a recently proposed analysis presumed to be size-independent). In adddition, a mechanistic model of competition was used to explore the behavior of both methods of estimating competitive performance.Results from the three-year experiment showed that Relative Yields (RYs) were correlated with the initial sizes of plants for the first two years but not the third. By the third year, RYs were highly correlated with Relative Efficiency Index values (REIs) suggesting that the effects of initial size were eventually overcome. Model results showed that RYs are inherently biased in favor of larger plants during the early phases of competition while REIs are not. Further, model analysis confirmed that the size bias associated with RYs declines with increasing duration of the experiment. It is concluded that current generalizations about the relationship between plant size and competitive ability may be biased by the procedures used to analyze competition experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...