Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 194(1): 243-257, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37399189

RESUMEN

Plant lignocellulosic biomass, i.e. secondary cell walls of plants, is a vital alternative source for bioenergy. However, the acetylation of xylan in secondary cell walls impedes the conversion of biomass to biofuels. Previous studies have shown that REDUCED WALL ACETYLATION (RWA) proteins are directly involved in the acetylation of xylan but the regulatory mechanism of RWAs is not fully understood. In this study, we demonstrate that overexpression of a Populus trichocarpa PtRWA-C gene increases the level of xylan acetylation and increases the lignin content and S/G ratio, ultimately yielding poplar woody biomass with reduced saccharification efficiency. Furthermore, through gene coexpression network and expression quantitative trait loci (eQTL) analysis, we found that PtRWA-C was regulated not only by the secondary cell wall hierarchical regulatory network but also by an AP2 family transcription factor HARDY (HRD). Specifically, HRD activates PtRWA-C expression by directly binding to the PtRWA-C promoter, which is also the cis-eQTL for PtRWA-C. Taken together, our findings provide insights into the functional roles of PtRWA-C in xylan acetylation and consequently saccharification and shed light on synthetic biology approaches to manipulate this gene and alter cell wall properties. These findings have substantial implications for genetic engineering of woody species, which could be used as a sustainable source of biofuels, valuable biochemicals, and biomaterials.


Asunto(s)
Populus , Populus/genética , Populus/metabolismo , Xilanos/metabolismo , Acetilación , Biomasa , Biocombustibles/análisis , Plantas/metabolismo , Pared Celular/metabolismo , Lignina/metabolismo
2.
Nat Plants ; 9(2): 238-254, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36747050

RESUMEN

Peatlands are crucial sinks for atmospheric carbon but are critically threatened due to warming climates. Sphagnum (peat moss) species are keystone members of peatland communities where they actively engineer hyperacidic conditions, which improves their competitive advantage and accelerates ecosystem-level carbon sequestration. To dissect the molecular and physiological sources of this unique biology, we generated chromosome-scale genomes of two Sphagnum species: S. divinum and S. angustifolium. Sphagnum genomes show no gene colinearity with any other reference genome to date, demonstrating that Sphagnum represents an unsampled lineage of land plant evolution. The genomes also revealed an average recombination rate an order of magnitude higher than vascular land plants and short putative U/V sex chromosomes. These newly described sex chromosomes interact with autosomal loci that significantly impact growth across diverse pH conditions. This discovery demonstrates that the ability of Sphagnum to sequester carbon in acidic peat bogs is mediated by interactions between sex, autosomes and environment.


Asunto(s)
Ecosistema , Sphagnopsida , Secuestro de Carbono , Sphagnopsida/fisiología , Clima , Cromosomas Sexuales
3.
Plant Direct ; 6(8): e419, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35979037

RESUMEN

Woody biomass is an important feedstock for biofuel production. Manipulation of wood properties that enable efficient conversion of biomass to biofuel reduces cost of biofuel production. Wood cell wall composition is regulated at several levels that involve expression of transcription factors such as wood-/secondary cell wall-associated NAC domains (WND or SND). In Arabidopsis thaliana, SND1 regulates cell wall composition through activation of its down-stream targets such as MYBs. The functional aspects of SND1 homologs in the woody Populus have been studied through transgenic manipulation. In this study, we investigated the role of PdWND1B, Populus SND1 sequence ortholog, in wood formation using transgenic manipulation through over-expression or silencing under the control of a vascular-specific 4-coumarate-CoA ligase (4CL) promoter. As compared with control plants, PdWND1B-RNAi plants were shorter in height, with significantly reduced stem diameter and dry biomass, whereas there were no significant differences in growth and productivity of PdWND1B over-expression plants. Conversely, PdWND1B over-expression lines showed a significant reduction in cellulose and increase in lignin content, whereas there was no significant impact on lignin content of downregulated lines. Stem carbohydrate composition analysis revealed a decrease in glucose, mannose, arabinose, and galactose, but an increase in xylose in the over-expression lines. Transcriptome analysis revealed upregulation of several downstream transcription factors and secondary cell wall related structural genes in the PdWND1B over-expression lines, partly explaining the observed phenotypic changes in cell wall chemistry. Relative to the control, glucose release efficiency and ethanol production from stem biomass was significantly reduced in over-expression lines. Our results show that PdWND1B is an important factor determining biomass productivity, cell wall chemistry and its conversion to biofuels in Populus.

4.
Plant Biotechnol J ; 18(3): 859-871, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31498543

RESUMEN

Prefoldin (PFD) is a group II chaperonin that is ubiquitously present in the eukaryotic kingdom. Six subunits (PFD1-6) form a jellyfish-like heterohexameric PFD complex and function in protein folding and cytoskeleton organization. However, little is known about its function in plant cell wall-related processes. Here, we report the functional characterization of a PFD gene from Populus deltoides, designated as PdPFD2.2. There are two copies of PFD2 in Populus, and PdPFD2.2 was ubiquitously expressed with high transcript abundance in the cambial region. PdPFD2.2 can physically interact with DELLA protein RGA1_8g, and its subcellular localization is affected by the interaction. In P. deltoides transgenic plants overexpressing PdPFD2.2, the lignin syringyl/guaiacyl ratio was increased, but cellulose content and crystallinity index were unchanged. In addition, the total released sugar (glucose and xylose) amounts were increased by 7.6% and 6.1%, respectively, in two transgenic lines. Transcriptomic and metabolomic analyses revealed that secondary metabolic pathways, including lignin and flavonoid biosynthesis, were affected by overexpressing PdPFD2.2. A total of eight hub transcription factors (TFs) were identified based on TF binding sites of differentially expressed genes in Populus transgenic plants overexpressing PdPFD2.2. In addition, several known cell wall-related TFs, such as MYB3, MYB4, MYB7, TT8 and XND1, were affected by overexpression of PdPFD2.2. These results suggest that overexpression of PdPFD2.2 can reduce biomass recalcitrance and PdPFD2.2 is a promising target for genetic engineering to improve feedstock characteristics to enhance biofuel conversion and reduce the cost of lignocellulosic biofuel production.


Asunto(s)
Biomasa , Chaperonas Moleculares/genética , Populus/genética , Genes de Plantas , Lignina , Plantas Modificadas Genéticamente
5.
BMC Plant Biol ; 19(1): 486, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31711424

RESUMEN

BACKGROUND: Plant secondary cell wall is a renewable feedstock for biofuels and biomaterials production. Arabidopsis VASCULAR-RELATED NAC DOMAIN (VND) has been demonstrated to be a key transcription factor regulating secondary cell wall biosynthesis. However, less is known about its role in the woody species. RESULTS: Here we report the functional characterization of Populus deltoides WOOD-ASSOCIATED NAC DOMAIN protein 3 (PdWND3A), a sequence homolog of Arabidopsis VND4 and VND5 that are members of transcription factor networks regulating secondary cell wall biosynthesis. PdWND3A was expressed at higher level in the xylem than in other tissues. The stem tissues of transgenic P. deltoides overexpressing PdWND3A (OXPdWND3A) contained more vessel cells than that of wild-type plants. Furthermore, lignin content and lignin monomer syringyl and guaiacyl (S/G) ratio were higher in OXPdWND3A transgenic plants than in wild-type plants. Consistent with these observations, the expression of FERULATE 5-HYDROXYLASE1 (F5H1), encoding an enzyme involved in the biosynthesis of sinapyl alcohol (S unit monolignol), was elevated in OXPdWND3A transgenic plants. Saccharification analysis indicated that the rate of sugar release was reduced in the transgenic plants. In addition, OXPdWND3A transgenic plants produced lower amounts of biomass than wild-type plants. CONCLUSIONS: PdWND3A affects lignin biosynthesis and composition and negatively impacts sugar release and biomass production.


Asunto(s)
Lignina/biosíntesis , Proteínas de Plantas/genética , Populus/genética , Factores de Transcripción/genética , Perfilación de la Expresión Génica , Lignina/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Populus/química , Populus/metabolismo , Factores de Transcripción/metabolismo
6.
Nat Plants ; 5(7): 676-680, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31285560

RESUMEN

The molecular mechanisms underlying mycorrhizal symbioses, the most ubiquitous and impactful mutualistic plant-microbial interaction in nature, are largely unknown. Through genetic mapping, resequencing and molecular validation, we demonstrate that a G-type lectin receptor-like kinase (lecRLK) mediates the symbiotic interaction between Populus and the ectomycorrhizal fungus Laccaria bicolor. This finding uncovers an important molecular step in the establishment of symbiotic plant-fungal associations and provides a molecular target for engineering beneficial mycorrhizal relationships.


Asunto(s)
Laccaria/fisiología , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Populus/enzimología , Populus/microbiología , Proteínas Quinasas/metabolismo , Simbiosis , Laccaria/genética , Micorrizas/genética , Proteínas de Plantas/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Populus/genética , Populus/fisiología , Proteínas Quinasas/genética
7.
Ann Bot ; 124(4): 617-626, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30689716

RESUMEN

BACKGROUND AND AIMS: The use of woody crops for Quad-level (approx. 1 × 1018 J) energy production will require marginal agricultural lands that experience recurrent periods of water stress. Populus species have the capacity to increase dehydration tolerance by lowering osmotic potential via osmotic adjustment. The aim of this study was to investigate how the inherent genetic potential of a Populus clone to respond to drought interacts with the nature of the drought to determine the degree of biochemical response. METHODS: A greenhouse drought stress study was conducted on Populus deltoides 'WV94' and the resulting metabolite profiles of leaves were determined by gas chromatography-mass spectrometry following trimethylsilylation for plants subjected to cyclic mild (-0.5 MPa pre-dawn leaf water potential) drought vs. cyclic severe (-1.26 MPa) drought in contrast to well-watered controls (-0.1 MPa) after two or four drought cycles, and in contrast to plants subjected to acute drought, where plants were desiccated for up to 8 d. KEY RESULTS: The nature of drought (cyclic vs. acute), frequency of drought (number of cycles) and the severity of drought (mild vs. severe) all dictated the degree of osmotic adjustment and the nature of the organic solutes that accumulated. Whereas cyclic drought induced the largest responses in primary metabolism (soluble sugars, organic acids and amino acids), acute onset of prolonged drought induced the greatest osmotic adjustment and largest responses in secondary metabolism, especially populosides (hydroxycinnamic acid conjugates of salicin). CONCLUSIONS: The differential adaptive metabolite responses in cyclic vs. acute drought suggest that stress acclimation occurs via primary metabolism in response to cyclic drought, whereas expanded metabolic plasticity occurs via secondary metabolism following severe, acute drought. The shift in carbon partitioning to aromatic metabolism with the production of a diverse suite of higher order salicylates lowers osmotic potential and increases the probability of post-stress recovery.


Asunto(s)
Sequías , Populus , Deshidratación , Humanos , Hojas de la Planta , Agua
8.
Front Plant Sci ; 9: 1669, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30568662

RESUMEN

A greater understanding of biosynthesis, signaling and regulatory pathways involved in determining stem growth and secondary cell wall chemistry is important for enabling pathway engineering and genetic optimization of biomass properties. The present study describes a new functional role of PdIQD10, a Populus gene belonging to the IQ67-Domain1 family of IQD genes, in impacting biomass formation and chemistry. Expression studies showed that PdIQD10 has enhanced expression in developing xylem and tension-stressed tissues in Populus deltoides. Molecular dynamics simulation and yeast two-hybrid interaction experiments suggest interactions with two calmodulin proteins, CaM247 and CaM014, supporting the sequence-predicted functional role of the PdIQD10 as a calmodulin-binding protein. PdIQD10 was found to interact with specific Populus isoforms of the Kinesin Light Chain protein family, shown previously to function as microtubule-guided, cargo binding and delivery proteins in Arabidopsis. Subcellular localization studies showed that PdIQD10 localizes in the nucleus and plasma membrane regions. Promoter-binding assays suggest that a known master transcriptional regulator of secondary cell wall biosynthesis (PdWND1B) may be upstream of an HD-ZIP III gene that is in turn upstream of PdIQD10 gene in the transcriptional network. RNAi-mediated downregulation of PdIQD10 expression resulted in plants with altered biomass properties including higher cellulose, wall glucose content and greater biomass quantity. These results present evidence in support of a new functional role for an IQD gene family member, PdIQD10, in secondary cell wall biosynthesis and biomass formation in Populus.

9.
PLoS One ; 13(8): e0202519, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30118526

RESUMEN

A characteristic feature of plant cells is the ability to form callus from parenchyma cells in response to biotic and abiotic stimuli. Tissue culture propagation of recalcitrant plant species and genetic engineering for desired phenotypes typically depends on efficient in vitro callus generation. Callus formation is under genetic regulation, and consequently, a molecular understanding of this process underlies successful generation for propagation materials and/or introduction of genetic elements in experimental or industrial applications. Herein, we identified 11 genetic loci significantly associated with callus formation in Populus trichocarpa using a genome-wide association study (GWAS) approach. Eight of the 11 significant gene associations were consistent across biological replications, exceeding a chromosome-wide-log10 (p) = 4.46 [p = 3.47E-05] Bonferroni-adjusted significance threshold. These eight genes were used as hub genes in a high-resolution co-expression network analysis to gain insight into the genome-wide basis of callus formation. A network of positively and negatively co-expressed genes, including several transcription factors, was identified. As proof-of-principle, a transient protoplast assay confirmed the negative regulation of a Chloroplast Nucleoid DNA-binding-related gene (Potri.018G014800) by the LEC2 transcription factor. Many of the candidate genes and co-expressed genes were 1) linked to cell division and cell cycling in plants and 2) showed homology to tumor and cancer-related genes in humans. The GWAS approach based on a high-resolution marker set, and the ability to manipulate targets genes in vitro, provided a catalog of high-confidence genes linked to callus formation that can serve as an important resource for successful manipulation of model and non-model plant species, and likewise, suggests a robust method of discovering common homologous functions across organisms.


Asunto(s)
Callo Óseo/crecimiento & desarrollo , Populus/genética , Factores de Transcripción/genética , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Fenotipo , Populus/crecimiento & desarrollo
10.
New Phytol ; 220(2): 502-516, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29992670

RESUMEN

3-O-caffeoylquinic acid, also known as chlorogenic acid (CGA), functions as an intermediate in lignin biosynthesis in the phenylpropanoid pathway. It is widely distributed among numerous plant species and acts as an antioxidant in both plants and animals. Using GC-MS, we discovered consistent and extreme variation in CGA content across a population of 739 4-yr-old Populus trichocarpa accessions. We performed genome-wide association studies (GWAS) from 917 P. trichocarpa accessions and expression-based quantitative trait loci (eQTL) analyses to identify key regulators. The GWAS and eQTL analyses resolved an overlapped interval encompassing a hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase 2 (PtHCT2) that was significantly associated with CGA and partially characterized metabolite abundances. PtHCT2 leaf expression was significantly correlated with CGA abundance and it was regulated by cis-eQTLs containing W-box for WRKY binding. Among all nine PtHCT homologs, PtHCT2 is the only one that responds to infection by the fungal pathogen Sphaerulina musiva (a Populus pathogen). Validation using protoplast-based transient expression system suggests that PtHCT2 is regulated by the defense-responsive WRKY. These results are consistent with reports of CGA functioning as an antioxidant in response to biotic stress. This study provides insights into data-driven and omics-based inference of gene function in woody species.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Proteínas de Plantas/metabolismo , Populus/genética , Sitios de Carácter Cuantitativo/genética , Ácido Quínico/análogos & derivados , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Duplicación de Gen , Redes Reguladoras de Genes , Metaboloma , Proteínas de Plantas/química , Polimorfismo de Nucleótido Simple/genética , Ácido Quínico/metabolismo
11.
Plant Cell ; 30(7): 1645-1660, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29891568

RESUMEN

Long-lived perennial plants, with distinctive habits of inter-annual growth, defense, and physiology, are of great economic and ecological importance. However, some biological mechanisms resulting from genome duplication and functional divergence of genes in these systems remain poorly studied. Here, we discovered an association between a poplar (Populus trichocarpa) 5-enolpyruvylshikimate 3-phosphate synthase gene (PtrEPSP) and lignin biosynthesis. Functional characterization of PtrEPSP revealed that this isoform possesses a helix-turn-helix motif in the N terminus and can function as a transcriptional repressor that regulates expression of genes in the phenylpropanoid pathway in addition to performing its canonical biosynthesis function in the shikimate pathway. We demonstrated that this isoform can localize in the nucleus and specifically binds to the promoter and represses the expression of a SLEEPER-like transcriptional regulator, which itself specifically binds to the promoter and represses the expression of PtrMYB021 (known as MYB46 in Arabidopsis thaliana), a master regulator of the phenylpropanoid pathway and lignin biosynthesis. Analyses of overexpression and RNAi lines targeting PtrEPSP confirmed the predicted changes in PtrMYB021 expression patterns. These results demonstrate that PtrEPSP in its regulatory form and PtrhAT form a transcriptional hierarchy regulating phenylpropanoid pathway and lignin biosynthesis in Populus.


Asunto(s)
3-Fosfoshikimato 1-Carboxiviniltransferasa/metabolismo , Populus/metabolismo , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Populus/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
PLoS One ; 13(2): e0190019, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29447168

RESUMEN

Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understood in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood (Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Overall, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly, we highlight the RD26 transcription factor as a gene regulated at both the transcript and protein level, regardless of species and drought condition, and, thus, represents a key, universal drought marker for Populus species.


Asunto(s)
Proteínas de Plantas/metabolismo , Populus/metabolismo , Proteoma , Estrés Fisiológico , Cromatografía Liquida , Sequías , Espectrometría de Masas en Tándem
13.
mSystems ; 3(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29404422

RESUMEN

Adverse growth conditions can lead to decreased plant growth, productivity, and survival, resulting in poor yields or failure of crops and biofeedstocks. In some cases, the microbial community associated with plants has been shown to alleviate plant stress and increase plant growth under suboptimal growing conditions. A systematic understanding of how the microbial community changes under these conditions is required to understand the contribution of the microbiome to water utilization, nutrient uptake, and ultimately yield. Using a microbiome inoculation strategy, we studied how the belowground microbiome of Populus deltoides changes in response to diverse environmental conditions, including water limitation, light limitation (shading), and metal toxicity. While plant responses to treatments in terms of growth, photosynthesis, gene expression and metabolite profiles were varied, we identified a core set of bacterial genera that change in abundance in response to host stress. The results of this study indicate substantial structure in the plant microbiome community and identify potential drivers of the phytobiome response to stress. IMPORTANCE The identification of a common "stress microbiome" indicates tightly controlled relationships between the plant host and bacterial associates and a conserved structure in bacterial communities associated with poplar trees under different growth conditions. The ability of the microbiome to buffer the plant from extreme environmental conditions coupled with the conserved stress microbiome observed in this study suggests an opportunity for future efforts aimed at predictably modulating the microbiome to optimize plant growth.

14.
Plant J ; 93(3): 515-533, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29237241

RESUMEN

The draft genome of the moss model, Physcomitrella patens, comprised approximately 2000 unordered scaffolds. In order to enable analyses of genome structure and evolution we generated a chromosome-scale genome assembly using genetic linkage as well as (end) sequencing of long DNA fragments. We find that 57% of the genome comprises transposable elements (TEs), some of which may be actively transposing during the life cycle. Unlike in flowering plant genomes, gene- and TE-rich regions show an overall even distribution along the chromosomes. However, the chromosomes are mono-centric with peaks of a class of Copia elements potentially coinciding with centromeres. Gene body methylation is evident in 5.7% of the protein-coding genes, typically coinciding with low GC and low expression. Some giant virus insertions are transcriptionally active and might protect gametes from viral infection via siRNA mediated silencing. Structure-based detection methods show that the genome evolved via two rounds of whole genome duplications (WGDs), apparently common in mosses but not in liverworts and hornworts. Several hundred genes are present in colinear regions conserved since the last common ancestor of plants. These syntenic regions are enriched for functions related to plant-specific cell growth and tissue organization. The P. patens genome lacks the TE-rich pericentromeric and gene-rich distal regions typical for most flowering plant genomes. More non-seed plant genomes are needed to unravel how plant genomes evolve, and to understand whether the P. patens genome structure is typical for mosses or bryophytes.


Asunto(s)
Evolución Biológica , Bryopsida/genética , Cromosomas de las Plantas , Genoma de Planta , Centrómero , Cromatina/genética , Metilación de ADN , Elementos Transponibles de ADN , Variación Genética , Polimorfismo de Nucleótido Simple , Recombinación Genética , Sintenía
15.
Biotechnol Biofuels ; 10: 253, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29213313

RESUMEN

BACKGROUND: One of the major barriers to the development of lignocellulosic feedstocks is the recalcitrance of plant cell walls to deconstruction and saccharification. Recalcitrance can be reduced by targeting genes involved in cell wall biosynthesis, but this can have unintended consequences that compromise the agronomic performance of the trees under field conditions. Here we report the results of a field trial of fourteen distinct transgenic Populus deltoides lines that had previously demonstrated reduced recalcitrance without yield penalties under greenhouse conditions. RESULTS: Survival and productivity of the trial were excellent in the first year, and there was little evidence for reduced performance of the transgenic lines with modified target gene expression. Surprisingly, the most striking phenotypic effects in this trial were for two empty-vector control lines that had modified bud set and bud flush. This is most likely due to somaclonal variation or insertional mutagenesis. Traits related to yield, crown architecture, herbivory, pathogen response, and frost damage showed few significant differences between target gene transgenics and empty vector controls. However, there were a few interesting exceptions. Lines overexpressing the DUF231 gene, a putative O-acetyltransferase, showed early bud flush and marginally increased height growth. Lines overexpressing the DUF266 gene, a putative glycosyltransferase, had significantly decreased stem internode length and slightly higher volume index. Finally, lines overexpressing the PFD2 gene, a putative member of the prefoldin complex, had a slightly reduced volume index. CONCLUSIONS: This field trial demonstrates that these cell wall modifications, which decreased cell wall recalcitrance under laboratory conditions, did not seriously compromise first-year performance in the field, despite substantial challenges, including an outbreak of a stem boring insect (Gypsonoma haimbachiana), attack by a leaf rust pathogen (Melampsora spp.), and a late frost event. This bodes well for the potential utility of these lines as advanced biofuels feedstocks.

16.
Biotechnol Biofuels ; 10: 74, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28344649

RESUMEN

BACKGROUND: Domain of Unknown Function 266 (DUF266) is a plant-specific domain. DUF266-containing proteins (DUF266 proteins) have been categorized as 'not classified glycosyltransferases (GTnc)' due to amino acid similarity with GTs. However, little is known about the function of DUF266 proteins. RESULTS: Phylogenetic analysis revealed that DUF266 proteins are only present in the land plants including moss and lycophyte. We report the functional characterization of one member of DUF266 proteins in Populus, PdDUF266A. PdDUF266A was ubiquitously expressed with high abundance in the xylem. In Populus transgenic plants overexpressing PdDUF266A (OXPdDUF266A), the glucose and cellulose contents were significantly higher, while the lignin content was lower than that in the wild type. Degree of polymerization of cellulose in OXPdDUF266A transgenic plants was also higher, whereas cellulose crystallinity index remained unchanged. Gene expression analysis indicated that cellulose biosynthesis-related genes such as CESA and SUSY were upregulated in mature leaf and xylem of OXPdDUF266A transgenic plants. Moreover, PdDUF266A overexpression resulted in an increase of biomass production. Their glucose contents and biomass phenotypes were further validated via heterologous expression of PdDUF266A in Arabidopsis. Results from saccharification treatment demonstrated that the rate of sugar release was increased by approximately 38% in the OXPdDUF266A transgenic plants. CONCLUSIONS: These results suggest that the overexpression of PdDUF266A can increase cellulose content, reduce recalcitrance, and enhance biomass production, and that PdDUF266A is a promising target for genetic manipulation for biofuel production.

17.
Biotechnol Biofuels ; 10: 311, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29299061

RESUMEN

BACKGROUND: Domain of Unknown Function 231-containing proteins (DUF231) are plant specific and their function is largely unknown. Studies in the model plants Arabidopsis and rice suggested that some DUF231 proteins act in the process of O-acetyl substitution of hemicellulose and esterification of pectin. However, little is known about the function of DUF231 proteins in woody plant species. RESULTS: This study provides evidence supporting that one member of DUF231 family proteins in the woody perennial plant Populus deltoides (genotype WV94), PdDUF231A, has a role in the acetylation of xylan and affects cellulose biosynthesis. A total of 52 DUF231-containing proteins were identified in the Populus genome. In P. deltoides transgenic lines overexpressing PdDUF231A (OXPdDUF231A), glucose and cellulose contents were increased. Consistent with these results, the transcript levels of cellulose biosynthesis-related genes were increased in the OXPdDUF231A transgenic lines. Furthermore, the relative content of total acetylated xylan was increased in the OXPdDUF231A transgenic lines. Enzymatic saccharification assays revealed that the rate of glucose release increased in OXPdDUF231A transgenic lines. Plant biomass productivity was also increased in OXPdDUF231A transgenic lines. CONCLUSIONS: These results suggest that PdDUF231A affects cellulose biosynthesis and plays a role in the acetylation of xylan. PdDUF231A is a promising target for genetic modification for biofuel production because biomass productivity and compositional quality can be simultaneously improved through overexpression.

18.
Front Plant Sci ; 7: 497, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27200001

RESUMEN

The biological function of the plant-microbiome system is the result of contributions from the host plant and microbiome members. The Populus root microbiome is a diverse community that has high abundance of ß- and γ-Proteobacteria, both classes which include multiple plant-growth promoting representatives. To understand the contribution of individual microbiome members in a community, we studied the function of a simplified community consisting of Pseudomonas and Burkholderia bacterial strains isolated from Populus hosts and inoculated on axenic Populus cutting in controlled laboratory conditions. Both strains increased lateral root formation and root hair production in Arabidopsis plate assays and are predicted to encode for different functions related to growth and plant growth promotion in Populus hosts. Inoculation individually, with either bacterial isolate, increased root growth relative to uninoculated controls, and while root area was increased in mixed inoculation, the interaction term was insignificant indicating additive effects of root phenotype. Complementary data including photosynthetic efficiency, whole-transcriptome gene expression and GC-MS metabolite expression data in individual and mixed inoculated treatments indicate that the effects of these bacterial strains are unique and additive. These results suggest that the function of a microbiome community may be predicted from the additive functions of the individual members.

19.
Plant Biotechnol J ; 14(10): 2010-20, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26997157

RESUMEN

Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated, and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here, we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G064000, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent on a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. We propose that this particular laccase has a range of functions related to oxidation of phenolics and conjugation of flavonoids that interact with lignin in the cell wall.


Asunto(s)
Pared Celular/química , Lacasa/metabolismo , Plantas Modificadas Genéticamente/enzimología , Populus/enzimología , Populus/genética , Pared Celular/enzimología , Pared Celular/genética , Regulación de la Expresión Génica de las Plantas/genética , Lacasa/genética , Lignina/metabolismo , Plantas Modificadas Genéticamente/genética , Xilosa/metabolismo
20.
Ecol Evol ; 5(14): 2839-50, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26306170

RESUMEN

Understanding the consequences of elevated CO2 (eCO2; 800 ppm) on terrestrial ecosystems is a central theme in global change biology, but relatively little is known about how altered plant C and N metabolism influences higher levels of biological organization. Here, we investigate the consequences of C and N interactions by genetically modifying the N-assimilation pathway in Arabidopsis and initiating growth chamber and mesocosm competition studies at current CO2 (cCO2; 400 ppm) and eCO2 over multiple generations. Using a suite of ecological, physiological, and molecular genomic tools, we show that a single-gene mutant of a key enzyme (nia2) elicited a highly orchestrated buffering response starting with a fivefold increase in the expression of a gene paralog (nia1) and a 63% increase in the expression of gene network module enriched for N-assimilation genes. The genetic perturbation reduced amino acids, protein, and TCA-cycle intermediate concentrations in the nia2 mutant compared to the wild-type, while eCO2 mainly increased carbohydrate concentrations. The mutant had reduced net photosynthetic rates due to a 27% decrease in carboxylation capacity and an 18% decrease in electron transport rates. The expression of these buffering mechanisms resulted in a penalty that negatively correlated with fitness and population dynamics yet showed only minor alterations in our estimates of population function, including total per unit area biomass, ground cover, and leaf area index. This study provides insight into the consequences of buffering mechanisms that occur post-genetic perturbations in the N pathway and the associated outcomes these buffering systems have on plant populations relative to eCO2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...