Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Immunol ; 53(7): e2250056, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37058370

RESUMEN

TLRs engage numerous adaptor proteins and signaling molecules, enabling a complex series of post-translational modifications (PTMs) to mount inflammatory responses. TLRs themselves are post-translationally modified following ligand-induced activation, with this being required to relay the full spectrum of proinflammatory signaling responses. Here, we reveal indispensable roles for TLR4 Y672 and Y749 phosphorylation in mounting optimal LPS-inducible inflammatory responses in primary mouse macrophages. LPS promotes phosphorylation at both tyrosine residues, with Y749 phosphorylation being required for maintenance of total TLR4 protein levels and Y672 phosphorylation exerting its pro-inflammatory effects more selectively by initiating ERK1/2 and c-FOS phosphorylation. Our data also support a role for the TLR4-interacting membrane proteins SCIMP and the SYK kinase axis in mediating TLR4 Y672 phosphorylation to permit downstream inflammatory responses in murine macrophages. The corresponding residue in human TLR4 (Y674) is also required for optimal LPS signaling responses. Our study, thus, reveals how a single PTM on one of the most widely studied innate immune receptors orchestrates downstream inflammatory responses.


Asunto(s)
Citocinas , Lipopolisacáridos , Humanos , Animales , Ratones , Fosforilación , Citocinas/metabolismo , Lipopolisacáridos/farmacología , Receptor Toll-Like 4 , Tirosina/metabolismo , Tirosina/farmacología , Macrófagos
2.
Pharmaceutics ; 15(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986873

RESUMEN

Cellular delivery of plasmid DNA (pDNA) specifically into dendritic cells (DCs) has provoked wide attention in various applications. However, delivery tools that achieve effective pDNA transfection in DCs are rare. Herein, we report that tetrasulphide bridged mesoporous organosilica nanoparticles (MONs) have enhanced pDNA transfection performance in DC cell lines compared to conventional mesoporous silica nanoparticles (MSNs). The mechanism of enhanced pDNA delivery efficacy is attributed to the glutathione (GSH) depletion capability of MONs. Reduction of initially high GSH levels in DCs further increases the mammalian target of rapamycin complex 1 (mTORc1) pathway activation, enhancing translation and protein expression. The mechanism was further validated by showing that the increased transfection efficiency was apparent in high GSH cell lines but not in low GSH ones. Our findings may provide a new design principle of nano delivery systems where the pDNA delivery to DCs is important.

3.
Proc Natl Acad Sci U S A ; 120(4): e2212813120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649417

RESUMEN

The immune system must be able to respond to a myriad of different threats, each requiring a distinct type of response. Here, we demonstrate that the cytoplasmic lysine deacetylase HDAC7 in macrophages is a metabolic switch that triages danger signals to enable the most appropriate immune response. Lipopolysaccharide (LPS) and soluble signals indicating distal or far-away danger trigger HDAC7-dependent glycolysis and proinflammatory IL-1ß production. In contrast, HDAC7 initiates the pentose phosphate pathway (PPP) for NADPH and reactive oxygen species (ROS) production in response to the more proximal threat of nearby bacteria, as exemplified by studies on uropathogenic Escherichia coli (UPEC). HDAC7-mediated PPP engagement via 6-phosphogluconate dehydrogenase (6PGD) generates NADPH for antimicrobial ROS production, as well as D-ribulose-5-phosphate (RL5P) that both synergizes with ROS for UPEC killing and suppresses selective inflammatory responses. This dual functionality of the HDAC7-6PGD-RL5P axis prioritizes responses to proximal threats. Our findings thus reveal that the PPP metabolite RL5P has both antimicrobial and immunomodulatory activities and that engagement of enzymes in catabolic versus anabolic metabolic pathways triages responses to different types of danger for generation of inflammatory versus antimicrobial responses, respectively.


Asunto(s)
Antiinfecciosos , Triaje , Especies Reactivas de Oxígeno/metabolismo , NADP/metabolismo , Macrófagos/metabolismo , Antiinfecciosos/metabolismo , Vía de Pentosa Fosfato/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...