Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Glob Antimicrob Resist ; 39: 12-21, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39168373

RESUMEN

OBJECTIVES: Bone and joint infections (BJI) pose formidable challenges in orthopaedics due to antibiotic resistance and the complexities of biofilm, complicating treatment. This comprehensive exploration addresses the intricate challenges posed by BJI and highlights the significant role of phage therapy as a non-antibiotic strategy. METHODS: BJI, which encompass prosthetic joint infections, osteomyelitis, and purulent arthritis, are exacerbated by biofilm formation on bone and implant surfaces, hindering treatment efficacy. Gram-negative bacterial infections, characterized by elevated antibiotic resistance, further contribute to the clinical challenge. Amidst this therapeutic challenge, phage therapy emerges as a potential strategy, showing unique characteristics such as strict host specificity and biofilm disruption capabilities. RESULTS: The review unveils the dynamics of phages, including their origins, lifecycle outcomes, and genomic characteristics. Animal studies, in vitro investigations, and clinical research provide compelling evidence of the efficacy of phages in treating Staphylococcus aureus infections, particularly in osteomyelitis cases. Phage lysins exhibit biofilm-disrupting capabilities, offering a meaningful method for addressing BJI. Recent statistical analyses reveal high clinical relief rates and a favourable safety profile for phage therapy. CONCLUSIONS: Despite its promise, phage therapy encounters limitations, including a narrow host range and potential immunogenicity. The comprehensive analysis navigates these challenges and charts the future of phage therapy, emphasizing standardization, pharmacokinetics, and global collaboration. Anticipated strides in phage engineering and combination therapy hold promise for combating antibiotic-resistant BJI.

2.
Front Physiol ; 15: 1290234, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022306

RESUMEN

In recent years, the emerging phenomenon of ferroptosis has garnered significant attention as a distinctive mode of programmed cell death. Distinguished by its reliance on iron and dependence on reactive oxygen species (ROS), ferroptosis has emerged as a subject of extensive investigation. Mechanistically, this intricate process involves perturbations in iron homeostasis, dampening of system Xc-activity, morphological dynamics within mitochondria, and the onset of lipid peroxidation. Additionally, the concomitant phenomenon of ferritinophagy, the autophagic degradation of ferritin, assumes a pivotal role by facilitating the liberation of iron ions from ferritin, thereby advancing the progression of ferroptosis. This discussion thoroughly examines the detailed cell structures and basic processes behind ferroptosis and ferritinophagy. Moreover, it scrutinizes the intricate web of regulators that orchestrate these processes and examines their intricate interplay within the context of joint disorders. Against the backdrop of an annual increase in cases of osteoarthritis, rheumatoid arthritis, and gout, these narrative sheds light on the intriguing crossroads of pathophysiology by dissecting the intricate interrelationships between joint diseases, ferroptosis, and ferritinophagy. The newfound insights contribute fresh perspectives and promising therapeutic avenues, potentially revolutionizing the landscape of joint disease management.

3.
Artif Cells Nanomed Biotechnol ; 51(1): 242-254, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37140355

RESUMEN

Osteoarthritis (OA) is a multi-factorial chronic joint disease mainly identified by synovial inflammation, cartilage damage, and degeneration. Our study applied bioinformatics analysis to uncover the immunity in OA and tried to explore the underlying immune-related molecular mechanism. First, OA-related gene-expression profiling data were retrieved from GEO database. Then, we analysed a series of datadata with using the xCell algorithm, GEO2R, enrichment analysis of SangerBox website, CytoHubba, ROC logistic regression and correlation analysis. Finally, Nine infiltrating immune cells with differential abundance between OA and normal samples were obtained. There were 42 IODEGs in OA, and their functions were associated with immune cells and corresponding biological processes. Moreover, 5 hub genes, including GREM1, NRP1, VEGFA, FYN and IL6R, were identified. Correlation analysis demonstrated that NRP1 was negatively associated with NKT cells, NRP1 and GREM1 were positively associated with aDC, VEGFA was positively associated with CD8+ naïve T cells, while VEGFA, FYN and IL6R were negatively associated with Macrophages M1. The 5 hub genes could be employed as effective diagnostic biomarkers for OA. In addition, they may participate in OA pathogenesis via interactions with infiltrating immune cells.


Asunto(s)
Osteoartritis , Humanos , Osteoartritis/genética , Inflamación , Biomarcadores , Biología Computacional , Bases de Datos Factuales , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA