Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Anim Nutr ; 8(1): 331-340, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35024470

RESUMEN

Subacute ruminal acidosis (SARA) represents one of the most important digestive disorders in intensive dairy farms, and dairy cows are individually different in the severity of SARA risk. The objectives of the current study were to investigate differences in the ruminal bacterial community and metabolome in dairy cattle with different susceptibility to SARA. In the present study, 12 cows were initially enrolled in the experiment. Based on average ruminal pH, 4 cows with the lowest ruminal pH were assigned to the susceptible group (SUS, pH = 5.76, n = 4) and 4 cows with the highest ruminal pH assigned to the tolerant group (TOL, pH = 6.10, n = 4). Rumen contents from susceptible (SUS, n = 4) and tolerant (TOL, n = 4) dairy cows were collected through rumen fistula to systematically reveal the rumen microbial and metabolic alterations of dairy cows with different susceptibility to SARA using multi-omics approaches (16S and 18S rRNA gene sequencing and metabolome). The results showed that despite being fed the same diet, SUS cows had lower ruminal pH and higher concentrations of total volatile fatty acids (VFA) and propionate than TOL cows (P < 0.05). No significant differences were observed in dry matter intake, milk yield, and other milk compositions between the SUS and TOL groups (P > 0.05). The principal coordinates analysis based on the analysis of molecular variance indicated a significant difference in bacterial composition between the two groups (P = 0.01). More specifically, the relative abundance of starch-degrading bacteria (Prevotella spp.) was greater (P < 0.05), while the proportion of fiber-degrading bacteria (unclassified Ruminococcaceae spp., Ruminococcus spp., Papillibacter, and unclassified Family_XIII) was lower in the rumen of SUS cows compared with TOL cows (P < 0.05). Community analysis of protozoa showed that there were no significant differences in the diversity, richness, and community structure (P > 0.05). Metabolomics analysis revealed that the concentrations of organic acids (such as lactic acid), biogenic amines (such as histamine), and bacterial degradation products (such as hypoxanthine) were significantly higher in the SUS group compared to the TOL group (P < 0.05). These findings revealed that the higher proportion of starch-degrading bacteria/lower fiber-degrading bacteria in the rumen of SUS cows resulted in higher VFA-producing capacity, in particular propionate. This caused a disruption in metabolic homeostasis in the rumen which might be the reason for the higher susceptibility to SARA. Overall, these findings enhanced our understanding of the ruminal microbiome and metabolic changes in cows susceptible to SARA.

3.
J Orthop Surg Res ; 16(1): 590, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34641924

RESUMEN

BACKGROUND: To determine the long-term effects (a minimum follow-up time 8.8 years) of cemented and cementless fixations used for total knee arthroplasty (TKA). METHODS: PubMed, EMBASE, Ovid, Cochrane Library, CINAHL, China National Knowledge Infrastructure and China Wangfang database were interrogated for appropriate randomized controlled trials (RCTs) through July 2020. Data were extracted and assessed for accuracy by 2 of the authors acting independently. Any controversial discrepancies were resolved after discussion with a third author. RESULT: Eight RCTs were included with low to moderate bias risks. The cemented fixation of TKA was comparable to cementless fixation in terms of implant survival (relative risk, 1.016; 95% CI 0.978 to 1.056; P = 0.417), Knee Society (KS) knee score (standardized mean difference (SMD), - 0.107; 95% CI - 0.259 to 0.045; P = 0.168), KS function score (SMD - 0.065; 95% CI - 0.238 to 0.109; P = 0.463), KS pain score (SMD - 0.300; 95% CI - 0.641 to 0.042; P = 0.085), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score (SMD - 0.117; 95% CI - 0.307 to 0.073; P = 0.227), HSS score (SMD - 0.027; 95% CI - 0.270 to 0.217; P = 0.829), range of motion (SMD 0.061; 95% CI - 0.205 to 0.327; P = 0.652) at ≥ 8.8 years of follow-up. In terms of radiographic outcomes at ≥ 8.8 years of follow-up, the incidence of a radiolucent line in the cementless group was lower than for the cemented group (SMD 3.828; 95% CI 2.228 to 6.576; P < 0.001). However, the maximum total point motion (MTPM) of the cementless group was greater than for the cemented group (SMD - 0.739; 95% CI - 1.474 to - 0.005; P = 0.048). CONCLUSIONS: Long-term follow-up verified that cementless and cemented fixation have similar prosthesis survival rates, clinical scores and mobility. However, radiography suggested that each technique had an advantage with regard to the radiolucent line and MTPM.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Prótesis de la Rodilla , Osteoartritis de la Rodilla , Artroplastia de Reemplazo de Rodilla/efectos adversos , Cementos para Huesos , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía , Osteoartritis de la Rodilla/cirugía , Falla de Prótesis , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
4.
Microbiome ; 9(1): 137, 2021 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-34118976

RESUMEN

BACKGROUND: Gastrointestinal tract (GIT) microbiomes in ruminants play major roles in host health and thus animal production. However, we lack an integrated understanding of microbial community structure and function as prior studies. are predominantly biased towards the rumen. Therefore, to acquire a microbiota inventory of the discrete GIT compartments, In this study, we used shotgun metagenomics to profile the microbiota of 370 samples that represent 10 GIT regions of seven ruminant species. RESULTS: Our analyses reconstructed a GIT microbial reference catalog with > 154 million nonredundant genes and identified 8745 uncultured candidate species from over 10,000 metagenome-assembled genomes. The integrated gene catalog across the GIT regions demonstrates spatial associations between the microbiome and physiological adaptations, and 8745 newly characterized genomes substantially expand the genomic landscape of ruminant microbiota, particularly those from the lower gut. This substantially expands the previously known set of endogenous microbial diversity and the taxonomic classification rate of the GIT microbiome. These candidate species encode hundreds of enzymes and novel biosynthetic gene clusters that improve our understanding concerning methane production and feed efficiency in ruminants. Overall, this study expands the characterization of the ruminant GIT microbiota at unprecedented spatial resolution and offers clues for improving ruminant livestock production in the future. CONCLUSIONS: Having access to a comprehensive gene catalog and collections of microbial genomes provides the ability to perform efficiently genome-based analysis to achieve a detailed classification of GIT microbial ecosystem composition. Our study will bring unprecedented power in future association studies to investigate the impact of the GIT microbiota in ruminant health and production. Video abstract.


Asunto(s)
Microbioma Gastrointestinal , Metagenoma , Animales , Bacterias/genética , Microbioma Gastrointestinal/genética , Filogenia , Rumiantes
5.
Genomics ; 113(4): 2769-2779, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34147634

RESUMEN

This study aimed to investigate the transcriptome profiles of liver and kidney in pregnant sheep under a nutritional restriction. Twenty Hu sheep were segregated into control group (CON) and severe feed restriction (FR) group. Results showed that the concentration of insulin decreased, whereas glucagon, epinephrine, and norepinephrine increased in the FR group. Histological morphology showed no apparent difference in terms of fat deposition in the kidney. In addition, FR significantly decreased the hepatic gene expression of gluconeogenic genes. However, in the kidney, the relative mRNA expression levels of gluconeogenic genes and glucose transporter 1 were observed to increase while the mRNA expression of sodium-glucose co-transporter 1 were decreased by FR. The differentially expressed genes in the liver were associated with fatty acid metabolism and inflammation. In the kidney, FR mainly activated the gluconeogenesis improving negative energy balance. These results provide a better understanding of the consequences of starvation during pregnancy.


Asunto(s)
ARN Largo no Codificante , Animales , Femenino , Perfilación de la Expresión Génica , Riñón , Hígado/metabolismo , Embarazo , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ovinos/genética , Transcriptoma
6.
J Anim Sci Biotechnol ; 12(1): 33, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33750470

RESUMEN

BACKGROUND: This study aimed to elucidate the molecular mechanisms of solid diet introduction initiating the cellular growth and maturation of rumen tissues and characterize the shared and unique biological processes upon different solid diet regimes. METHODS: Twenty-four Hu lambs were randomly allocated to three groups fed following diets: goat milk powder only (M, n = 8), goat milk powder + alfalfa hay (MH, n = 8), and goat milk powder + concentrate starter (MC, n = 8). At 42 days of age, the lambs were slaughtered. Ruminal fluid sample was collected for analysis of concentration of volatile fatty acid (VFA) and microbial crude protein (MCP). The sample of the rumen wall from the ventral sac was collected for analysis of rumen papilla morphology and transcriptomics. RESULTS: Compared with the M group, MH and MC group had a higher concentration of VFA, MCP, rumen weight, and rumen papilla area. The transcriptomic results of rumen wall showed that there were 312 shared differentially expressed genes (DEGs) between in "MH vs. M" and "MC vs. M", and 232 or 796 unique DEGs observed in "MH vs. M" or "MC vs. M", respectively. The shared DEGs were most enriched in VFA absorption and metabolism, such as peroxisome proliferator-activated receptor (PPAR) signaling pathway, butanoate metabolism, and synthesis and degradation of ketone bodies. Additionally, a weighted gene co-expression network analysis identified M16 (2,052 genes) and M18 (579 genes) modules were positively correlated with VFA and rumen wall morphology. The M16 module was mainly related to metabolism pathway, while the M18 module was mainly associated with signaling transport. Moreover, hay specifically depressed expression of genes involved in cytokine production, immune response, and immunocyte activation, and concentrate starter mainly altered nutrient transport and metabolism, especially ion transport, amino acid, and fatty acid metabolism. CONCLUSIONS: The energy production during VFA metabolism may drive the rumen wall development directly. The hay introduction facilitated establishment of immune function, while the concentrate starter enhanced nutrient transport and metabolism, which are important biological processes required for rumen development.

7.
Appl Microbiol Biotechnol ; 104(13): 5973-5984, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32415319

RESUMEN

The objective of this study was to evaluate the effect of undernutrition on colonic microbiota and fermentation in pregnant ewes. Sixteen ewes bearing multiple fetuses for 115 days in the control (CON) and severe feed restriction (SFR) groups were fed 100% and 30% level of ad libitum feed intake, respectively. After 15-day treatment, all ewes were sacrificed to collect colonic digesta samples to extract DNA for 16S rRNA sequencing and to detect fermentation parameters. Our data showed that SFR increased (P < 0.05) the levels of colonic propionate, isobutyrate, butyrate, isovalerate, and valerate, and slightly decreased (P < 0.1) colonic pH. The mole proportions of isobutyrate, butyrate, and isovalerate were increased (P < 0.05) upon SFR while that of acetate was decreased (P < 0.05). Hematoxylin-eosin staining sections exhibited the disorderly, irregular, and loose arrangement and part sloughing of colonic epithelial cells. Furthermore, SFR decreased (P < 0.05) the diversity of colonic microbiota and changed the microbial communities. At the genus level, SFR increased (P < 0.05) the abundance of unclassified Peptococcaceae and decreased (P < 0.05) the abundances of Ruminococcus, unclassified Ruminococcaceae, and unclassified VadinBB60. Additionally, the abundances of Ruminococcus and unclassified Ruminococcaceae were positively correlated (P < 0.05) with the acetate proportion while the abundance of unclassified Peptococcaceae was negatively correlated (P < 0.05) with the percentages of isobutyrate, butyrate, and isovalerate. In summary, SFR diminished the diversity of bacteria, affected the composition of bacterial communities, and finally changed the colonic fermentation pattern and epithelial histomorphology in pregnant ewes. KEY POINTS: • Undernutrition changed colonic bacterial diversity and composition in pregnant ewes. • Microbial alteration affected colonic fermentation pattern and parameters. • Alteration of colonic microbiota and fermentation damaged epithelium histomorphology. Graphical abstract.


Asunto(s)
Colon/microbiología , Microbioma Gastrointestinal/fisiología , Desnutrición/microbiología , Complicaciones del Embarazo/microbiología , Alimentación Animal/efectos adversos , Alimentación Animal/análisis , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Colon/metabolismo , Colon/patología , Ácidos Grasos Volátiles/análisis , Ácidos Grasos Volátiles/metabolismo , Femenino , Fermentación , Concentración de Iones de Hidrógeno , Mucosa Intestinal/patología , Desnutrición/metabolismo , Embarazo , Complicaciones del Embarazo/metabolismo , Ovinos
8.
FASEB J ; 34(5): 6508-6520, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32232897

RESUMEN

This study aimed to evaluate the oxidative status and antioxidant capacity in maternal and fetal livers upon undernutrition as well as the connection between oxidative stress and lipid metabolism disorder. Ten ewes, who were pregnant for 115 days, were restricted to a 30% level of ad libitum feed intake to develop an undernourished model, while another 10 pregnant ewes were fed normally as controls. Undernutrition induced severe lipid metabolism disorder and oxidative stress in blood, maternal liver, and fetal liver. RNA-sequencing data displayed that antioxidant capacity was changed and antioxidant genes were downregulated in maternal and fetal livers of the undernourished model. Non-esterified fatty acids (NEFAs) and beta-hydroxybutyrate (BHBA) levels showed a positive correlation with oxidative indices and negative correlation with the expression of antioxidant genes both in maternal and fetal livers. Primary hepatocytes experiments confirmed that both high levels of NEFAs and BHBA could elicit oxidative stress and decrease antioxidant capacity, and the peroxisome proliferator-activated receptor alpha (PPARA)/retinoid X receptor alpha (RXRA) signaling pathway played a vital role in enhancing antioxidant capacity and relieving oxidative stress. In conclusion, maternal undernutrition induced lipid metabolism disorder, which downregulated antioxidant genes, decreased antioxidant activity, and further triggered oxidative stress both in maternal and fetal livers. Activation of PPARA/RXRA signaling could enhance antioxidant capacity and mitigate oxidative stress. Our findings contribute to protecting the pregnant mother and her fetus from oxidative stress.


Asunto(s)
Antioxidantes/metabolismo , Feto/patología , Trastornos del Metabolismo de los Lípidos/patología , Hígado/patología , Desnutrición/complicaciones , Estrés Oxidativo , Complicaciones del Embarazo/patología , Ácido 3-Hidroxibutírico/metabolismo , Animales , Ácidos Grasos no Esterificados/metabolismo , Femenino , Feto/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Trastornos del Metabolismo de los Lípidos/etiología , Trastornos del Metabolismo de los Lípidos/metabolismo , Hígado/metabolismo , Intercambio Materno-Fetal , Embarazo , Complicaciones del Embarazo/etiología , Complicaciones del Embarazo/metabolismo , Ovinos , Transducción de Señal
9.
Br J Nutr ; 123(11): 1258-1268, 2020 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-32077388

RESUMEN

The objective of this study was to explore the metabolic profiles of pregnancy malnutrition induced by feed restriction (FR) and the counteracting effects of glycerol and rumen-protected choline chloride supplementation. Two feeding trials were conducted. In the first experiment, twenty pregnant Hu sheep carrying multiple fetuses with a gestation period of 108 d were randomly divided into two groups. The ewes in the control (CON) group were offered 100 % of their nutritional requirements as recommended by the National Research Council (NRC), while the FR group was offered 30 % of feed intake of CON for 15 d. In the second experiment, eighteen pregnant Hu sheep were offered a feed intake comprising 30 % of the NRC-recommended nutritional requirements twice daily. The sheep were randomly divided into three groups: the FR group in the second experiment (FR2), with no supplementation, the glycerol (GLY) group, which received 40 ml of glycerol per d, and the rumen-protected choline chloride (RPC) group, which received 10 g of rumen-protected choline chloride per d for 9 d. In the first experiment, the urine metabolome of sixteen ewes showed significant difference between the CON group and FR group. Compared with the CON group, FR decreased the level of d-glucose, lactic acid, levoglucosan, α-ketoglutarate, phosphohydroxypyruvic acid, glucose 6-phosphate and the methyl donors, while increasing the level of pyruvate, fumaric acid and carnitines in urine. Both the GLY and RPC treatments counteracted some of these changes and modulated the urine metabolome in advanced pregnant ewes suffering from malnutrition.


Asunto(s)
Colina/administración & dosificación , Suplementos Dietéticos , Glicerol/administración & dosificación , Desnutrición/orina , Orina/química , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Femenino , Fenómenos Fisiologicos Nutricionales Maternos , Metaboloma , Necesidades Nutricionales , Embarazo , Rumen/metabolismo , Ovinos
10.
Artículo en Inglés | MEDLINE | ID: mdl-31676441

RESUMEN

Maternal undernutrition during late gestation accelerates body fat mobilization to provide more energy for foetal growth and development, which unbalances metabolic homeostasis and results in serious lipid metabolism disorder. However, detailed regulatory mechanisms are poorly understood. Here, a sheep model was used to explore the regulatory role of PPARA/RXRA signalling in hepatic lipid metabolism in undernutrition based on RNA sequencing and cell experiments. KOG function classification showed that lipid transport and metabolism was markedly altered in an undernourished model. In detail, when compared with the controls, fatty acid transport and oxidation and triglyceride metabolism were up-regulated in an undernourished model, while fatty acid synthesis, steroid synthesis, and phospholipid metabolism were down-regulated. Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis demonstrated that PPARA/RXRA signalling pathway was altered. Moreover, PPARA signalling associated genes were positively correlated with hepatic non-esterified fatty acid (NEFA) levels, while retinol metabolism associated genes were negatively correlated with blood beta-hydroxybutyric acid (BHBA) levels. Results of primary hepatocytes showed that NEFAs could activate PPARA signalling and facilitate fatty acid oxidation (FAO) and ketogenesis, while BHBA could inhibit RXRA signalling and repress FAO and ketogenesis. Excessively accumulated NEFAs in hepatocytes promoted triglyceride synthesis. Furthermore, activation of PPARA/RXRA signalling by WY14643 and 9-cis-retinoic acid could enhance FAO and ketogenesis and reduce NEFAs accumulation and esterification. Our findings elucidate the regulatory mechanisms of NEFAs and BHBA on lipid metabolism as well as the potential role of the PPARA/RXRA signalling pathway in hepatic lipid metabolism, which may contribute to exploring new strategies to maintain lipid metabolic homeostasis in human beings.


Asunto(s)
Ácidos Grasos no Esterificados/metabolismo , Hígado/metabolismo , Desnutrición/metabolismo , PPAR alfa/metabolismo , Receptor alfa X Retinoide/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Alitretinoína/administración & dosificación , Animales , Modelos Animales de Enfermedad , Femenino , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Humanos , Lipogénesis/efectos de los fármacos , Hígado/patología , Desnutrición/patología , Intercambio Materno-Fetal/efectos de los fármacos , Intercambio Materno-Fetal/fisiología , Oxidación-Reducción/efectos de los fármacos , Embarazo , Pirimidinas/administración & dosificación , Ovinos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
11.
Metabolites ; 9(7)2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31340604

RESUMEN

Milk fat depression (MFD) syndrome represents a significant drawback to the dairy industry. The aim of this study was to unravel the ruminal metabolome-microbiome interaction in response to diet-induced MFD in dairy cows. Twelve healthy second parity Holstein dairy cows (days in milk (DIM) = 119 ± 14) were randomly assigned into control (CON, n = 6) group and treatment (TR, n = 6) group. Cows in TR group received a high-starch total mixed ration (TMR) designed to induce an MFD syndrome. Decreased milk fat yield and concentration in TR cows displayed the successful development of MFD syndrome. TR diet increased the relative abundance of Prevotella and decreased the relative abundance of unclassified Lachnospiraceae, Oribacterium, unclassified Veillonellaceae and Pseudobutyrivibrio in ruminal fluid. Metabolomics analysis revealed that the ruminal fluid content of glucose, amino acids and amines were significantly increased in TR cows compared with CON cows. Correlation analysis revealed that the concentration of amines and amino acids were highly correlated with the abundance of Oribacterium, Pseudobutyrivibrio, RC9_gut_group, unclassified BS11_gut_group and Selenomonas. In general, these findings revealed that TR diet reduced the rumination time and altered rumen fermentation type, which led to changes in the composition of ruminal microbiota and metabolites, and caused MFD.

12.
FASEB J ; 33(9): 9990-10004, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31167079

RESUMEN

Undernutrition accelerates body fat mobilization to alleviate negative energy balance, which disrupts homeostasis of lipid metabolism in maternal liver. However, little is known about its effect on fetal metabolism and development. Here, a sheep model was used to explore whether maternal undernutrition induces fetal lipid metabolism disorder and further inhibits fetal hepatic development. Twenty pregnant ewes were either fed normally or restricted to 30% level for 15 d, after which fetal hepatic samples were collected to conduct transcriptome, metabolome, histomorphology, and biochemical analysis. Results showed that maternal undernutrition altered the general transcriptome profile and metabolic mode in fetal liver. Fatty acid oxidation and ketogenesis were enhanced in fetal livers of undernourished ewes, which might be promoted by the activated peroxisome proliferator-activated receptor α signaling pathway, whereas cholesterol, steroid, and fatty acid synthesis were repressed. Maternal undernutrition increased triglyceride synthesis, decreased triglyceride degradation, and inhibited phospholipid degradation and synthesis in fetal liver. In addition, our data revealed that maternal undernutrition extremely inhibited DNA replication, cell cycle progression, and antiapoptosis and broke the balance between cell proliferation and apoptosis in fetal liver, indicating that maternal undernutrition affects the growth and development of fetal liver. Generally, these findings provide evidence that maternal undernutrition during pregnancy disturbs fetal lipid metabolism and inhibits fetal hepatic development in sheep, which greatly contribute to the further study of fetal metabolism and development in human beings.-Xue, Y., Guo, C., Hu, F., Zhu, W., Mao, S. Maternal undernutrition induces fetal hepatic lipid metabolism disorder and affects the development of fetal liver in a sheep model.


Asunto(s)
Feto/metabolismo , Hígado/metabolismo , Desnutrición/metabolismo , Complicaciones del Embarazo/metabolismo , Animales , Apoptosis , Ciclo Celular , Replicación del ADN , Ácidos Grasos/metabolismo , Femenino , Privación de Alimentos , Hepatocitos/metabolismo , Cetonas/metabolismo , Metabolismo de los Lípidos , Hígado/embriología , Metaboloma , Modelos Animales , Oxidación-Reducción , Fosfolípidos/metabolismo , Embarazo , Ovinos , Transcriptoma
13.
Metabolites ; 9(6)2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31185597

RESUMEN

Maternal metabolic disorders in ewes induced by energy deficiency have a detrimental effect on the maternal health and lambs. However, the dynamic processes of metabolic disorders are unknown. Therefore, this study attempted to explore the dynamic changes of maternal metabolism based on metabolomics approach during energy deficiency in pregnant ewes. Twenty pregnant Hu sheep were fed a basic diet or a 70% restricted basic diet. The HPLC-MS platform was applied to identify blood metabolites. Principal component analysis of blood samples based on their metabolic profile showed that blood samples of feed restriction group differed after the treatment. In particular, when comparing both groups, there were 120, 129, and 114 differential metabolites at day 5, day 10, and day 114 between the two groups, respectively. Enrichment analysis results showed that four metabolic pathways (glycerophospholipid metabolism, linoleic acid metabolism, arginine and proline metabolism, and aminoacyl-tRNA biosynthesis) at day 5, four metabolic pathways (aminoacyl-tRNA biosynthesis, aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, and citrate cycle) at day 10, and nine metabolic pathways (aminoacyl-tRNA biosynthesis, synthesis and degradation of ketone bodies, glycerophospholipid metabolism, butanoate metabolism, linoleic acid metabolism, citrate cycle, alanine, aspartate and glutamate metabolism, valine, leucine and isoleucine biosynthesis, and arginine and proline metabolism) at day 15 were significantly enriched between the two groups. These findings revealed temporal changes of metabolic disorders in pregnant ewes caused by severe feed restriction, which may provide insights into mitigation measures.

14.
Front Physiol ; 10: 66, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30800073

RESUMEN

Currently, knowledge about the impact of high-grain (HG) feeding on metabolite and protein expression profiles in ruminal tissue is limited. In this study, a combination of proteomic and metabolomic approaches was applied to evaluate metabolic and proteomic changes of the rumen epithelium in goats fed a hay diet (Hay) or HG diet. At the metabolome level, results from principal component analysis (PCA) and PLS-DA revealed clear differences in the biochemical composition of ruminal tissue of the control (Hay) and the grain-fed groups, demonstrating the evident impact of HG feeding on metabolite profile of ruminal epithelial tissues. As compared with the Hay group, HG feeding increased the levels of eight metabolites and decreased the concentrations of seven metabolites in ruminal epithelial tissues. HG feeding mainly altered starch and sucrose metabolism, purine metabolism, glyoxylate and dicarboxylate metabolism, glycerolipid metabolism, pyruvate metabolism, glycolysis or gluconeogenesis, galactose metabolism, glycine, serine and threonine metabolism, and arginine and proline metabolism in ruminal epithelium. At the proteome level, 35 differentially expressed proteins were found in the rumen epithelium between the Hay and HG groups, with 12 upregulated and 23 downregulated proteins. The downregulated proteins were related to fatty acid metabolism, carbohydrate metabolic processes and nucleoside metabolic processes, while most of upregulated proteins were involved in oxidative stress and detoxification. In general, our findings revealed that HG feeding resulted in differential proteomic and metabolomic profiles in the rumen epithelia of goats, which may contribute to better understanding how rumen epithelium adapt to HG feeding.

15.
Metabolites ; 8(4)2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30486444

RESUMEN

The mechanisms underlying the adaption of liver metabolism to the undernutrition in ewes during late gestation remain unclear. This research aimed to explore the adaptive mechanisms of liver metabolism by hepatic metabolome analysis in pregnant ewes to the negative energy balance induced by severe feed restriction. Twenty ewes carrying multiple fetuses and gestating for 115 days were fed normally or restricted to a 30% feed level (10 ewes in each group) for 15 days. All ewes were sacrificed and hepatic samples were collected and analyzed by liquid chromatography-mass spectrometry. Both the principal components analysis and partial least squares of discriminant analysis of hepatic metabolites showed the clear separation between ewes in the control and severely feed-restricted groups. The metabolic profile demonstrated that the proportions of differential metabolites between the two groups in fatty acids and lipids, organic acids, and amino acids and derivatives were 61.11%, 16.67%, and 11.11%, respectively. Enriched pathways of differential metabolites were mainly involved in fatty acids and amino acids metabolism and biosynthesis. Correlation networks of differential metabolites revealed that general metabolic pattern was changed apparently and mainly based on fatty acids and lipids in the livers of feed-restricted ewes. The accumulation and oxidation of long-chain fatty acids were intensified in the livers of feed-restricted ewes, while those of medium-chain fatty acids were the opposite. In general, severe feed restriction significantly affected the levels of hepatic metabolites and altered the overall metabolic pattern. Furthermore, fatty acids oxidation as well as the utilization of amino acids and organic acids were intensified to adapt to the negative energy balance during late gestation.

16.
J Anim Sci ; 96(10): 4293-4305, 2018 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-30272228

RESUMEN

The objective of this study was to evaluate the changes in the ruminal fermentation, epithelium-associated microbiota, and ruminal epithelial barrier function in response to severe feed restriction (SFR) in pregnant ewes. Sixteen pregnant ewes (108 d of gestation) were randomly blocked and assigned to 1 of 2 treatments: control (CON, n = 8) and SFR (n = 8). Ewes were fed a common diet with a 60:40 forage to concentrate ratio for 7-d baseline period followed by a SFR challenge period. Ewes on the SFR treatment were restricted to 30% of the base for 15 d. At the end of the experimental period, all animals were slaughtered and then ruminal contents and ruminal epithelial tissue were collected. Results showed that ruminal pH was greater in SFR group (P = 0.040) compared with CON group, while SFR decreased (P < 0.05) the concentrations of ruminal acetate, propionate, butyrate, and total volatile fatty acid. A plot of principal coordinate analysis and analysis of molecular variance revealed that the composition of ruminal epithelial bacterial communities in the CON group was distinct from that of the ruminal epithelial microbiome in the SFR animals. At the genus level, SFR increased the abundance of unclassified Neisseriaceae, Comamonas, and Papillibacter, and decreased the proportion of Howardella, Desulfobulbus, and Suttonella (P < 0.05) compared with CON group. The metagenome of ruminal epithelium-associated microbiota predicted by PICRUSt revealed that the SFR significantly affected 14 metabolic pathways, and 9 were significantly enriched in the SFR group. In particular, SFR markedly increased relative abundances of dominant gene families involved in amino acid metabolism (P = 0.003), cellular processes and signaling (P = 0.021), and lipid metabolism (P = 0.001). The real-time PCR results showed SFR decreased the mRNA expression of IL-10 (P = 0.003) and upregulated the mRNA expression of IL-6 (P = 0.003) and TLR4 (P = 0.021). The mRNA expression of Claudin-1 (P = 0.001) and ZO-1 (P = 0.009) were lower in the SFR group compared with the CON group. Generally, our data suggest that SFR decreased most ruminal fermentation parameters, altered the composition of rumen epithelium-associated microbiota, and compromised the barrier function of rumen epithelium. These findings are of great importance for understanding the alteration in the rumen function following SFR in pregnant ewes.


Asunto(s)
Alimentación Animal/análisis , Privación de Alimentos , Microbiota , Ovinos/fisiología , Animales , Butiratos/análisis , Dieta/veterinaria , Epitelio/microbiología , Epitelio/fisiología , Ácidos Grasos Volátiles/análisis , Femenino , Fermentación , Embarazo , Propionatos/análisis , Distribución Aleatoria , Rumen/microbiología , Rumen/fisiología , Ovinos/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...