Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiome ; 12(1): 86, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730492

RESUMEN

BACKGROUND: Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. In this study, we aimed to further characterize the functional properties of these bacteria. RESULTS: Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short-chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T-cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. CONCLUSION: We identified Clostridiales species that are sufficient to induce high levels of Tregs. We also identified a set of metabolic activities linked with Treg differentiation and Trichuris egg hatching mediated by these newly isolated bacteria. Altogether, this study provides functional insights into the microbiotas of individuals residing in a helminth-endemic region. Video Abstract.


Asunto(s)
Diferenciación Celular , Clostridiales , Microbioma Gastrointestinal , Linfocitos T Reguladores , Trichuris , Animales , Linfocitos T Reguladores/inmunología , Ratones , Malasia , Clostridiales/aislamiento & purificación , Humanos , Ácidos Grasos Volátiles/metabolismo , Femenino , Tricuriasis/parasitología , Tricuriasis/inmunología , Tricuriasis/microbiología
2.
Cell Host Microbe ; 32(5): 661-675.e10, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38657606

RESUMEN

The intestine and liver are thought to metabolize dietary nutrients and regulate host nutrient homeostasis. Here, we find that the gut microbiota also reshapes the host amino acid (aa) landscape via efficiently metabolizing intestinal aa. To identify the responsible microbes/genes, we developed a metabolomics-based assay to screen 104 commensals and identified candidates that efficiently utilize aa. Using genetics, we identified multiple responsible metabolic genes in phylogenetically diverse microbes. By colonizing germ-free mice with the wild-type strain and their isogenic mutant deficient in individual aa-metabolizing genes, we found that these genes regulate the availability of gut and circulatory aa. Notably, microbiota genes for branched-chain amino acids (BCAAs) and tryptophan metabolism indirectly affect host glucose homeostasis via peripheral serotonin. Collectively, at single-gene level, this work characterizes a microbiota-encoded metabolic activity that affects host nutrient homeostasis and provides a roadmap to interrogate microbiota-dependent activity to improve human health.


Asunto(s)
Aminoácidos de Cadena Ramificada , Aminoácidos , Microbioma Gastrointestinal , Homeostasis , Triptófano , Animales , Microbioma Gastrointestinal/fisiología , Ratones , Aminoácidos/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Triptófano/metabolismo , Ratones Endogámicos C57BL , Nutrientes/metabolismo , Intestinos/microbiología , Humanos , Metabolómica , Glucosa/metabolismo , Serotonina/metabolismo , Vida Libre de Gérmenes , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Masculino
3.
J Exp Med ; 221(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38506708

RESUMEN

Innate lymphoid cells (ILCs) can promote host defense, chronic inflammation, or tissue protection and are regulated by cytokines and neuropeptides. However, their regulation by diet and microbiota-derived signals remains unclear. We show that an inulin fiber diet promotes Tph1-expressing inflammatory ILC2s (ILC2INFLAM) in the colon, which produce IL-5 but not tissue-protective amphiregulin (AREG), resulting in the accumulation of eosinophils. This exacerbates inflammation in a murine model of intestinal damage and inflammation in an ILC2- and eosinophil-dependent manner. Mechanistically, the inulin fiber diet elevated microbiota-derived bile acids, including cholic acid (CA) that induced expression of ILC2-activating IL-33. In IBD patients, bile acids, their receptor farnesoid X receptor (FXR), IL-33, and eosinophils were all upregulated compared with controls, implicating this diet-microbiota-ILC2 axis in human IBD pathogenesis. Together, these data reveal that dietary fiber-induced changes in microbial metabolites operate as a rheostat that governs protective versus pathologic ILC2 responses with relevance to precision nutrition for inflammatory diseases.


Asunto(s)
Inmunidad Innata , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Interleucina-33 , Inulina , Linfocitos , Fibras de la Dieta , Ácidos y Sales Biliares , Inflamación
4.
Immunity ; 57(4): 876-889.e11, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38479384

RESUMEN

Concentrations of the secondary bile acid, deoxycholic acid (DCA), are aberrantly elevated in colorectal cancer (CRC) patients, but the consequences remain poorly understood. Here, we screened a library of gut microbiota-derived metabolites and identified DCA as a negative regulator for CD8+ T cell effector function. Mechanistically, DCA suppressed CD8+ T cell responses by targeting plasma membrane Ca2+ ATPase (PMCA) to inhibit Ca2+-nuclear factor of activated T cells (NFAT)2 signaling. In CRC patients, CD8+ T cell effector function negatively correlated with both DCA concentration and expression of a bacterial DCA biosynthetic gene. Bacteria harboring DCA biosynthetic genes suppressed CD8+ T cells effector function and promoted tumor growth in mice. This effect was abolished by disrupting bile acid metabolism via bile acid chelation, genetic ablation of bacterial DCA biosynthetic pathway, or specific bacteriophage. Our study demonstrated causation between microbial DCA metabolism and anti-tumor CD8+ T cell response in CRC, suggesting potential directions for anti-tumor therapy.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Ácidos y Sales Biliares , Ácido Desoxicólico/farmacología , Linfocitos T CD8-positivos
5.
Sci Immunol ; 9(93): eadj4775, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489352

RESUMEN

The gut microbiota promotes immune system development in early life, but the interactions between the gut metabolome and immune cells in the neonatal gut remain largely undefined. Here, we demonstrate that the neonatal gut is uniquely enriched with neurotransmitters, including serotonin, and that specific gut bacteria directly produce serotonin while down-regulating monoamine oxidase A to limit serotonin breakdown. We found that serotonin directly signals to T cells to increase intracellular indole-3-acetaldehdye and inhibit mTOR activation, thereby promoting the differentiation of regulatory T cells, both ex vivo and in vivo in the neonatal intestine. Oral gavage of serotonin into neonatal mice resulted in long-term T cell-mediated antigen-specific immune tolerance toward both dietary antigens and commensal bacteria. Together, our study has uncovered an important role for specific gut bacteria to increase serotonin availability in the neonatal gut and identified a function of gut serotonin in shaping T cell response to dietary antigens and commensal bacteria to promote immune tolerance in early life.


Asunto(s)
Microbioma Gastrointestinal , Serotonina , Animales , Ratones , Bacterias , Tolerancia Inmunológica , Antígenos
6.
Cell Rep Med ; 5(3): 101431, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38378002

RESUMEN

Sulfasalazine is a prodrug known to be effective for the treatment of inflammatory bowel disease (IBD)-associated peripheral spondyloarthritis (pSpA), but the mechanistic role for the gut microbiome in regulating its clinical efficacy is not well understood. Here, treatment of 22 IBD-pSpA subjects with sulfasalazine identifies clinical responders with a gut microbiome enriched in Faecalibacterium prausnitzii and the capacity for butyrate production. Sulfapyridine promotes butyrate production and transcription of the butyrate synthesis gene but in F. prausnitzii in vitro, which is suppressed by excess folate. Sulfasalazine therapy enhances fecal butyrate production and limits colitis in wild-type and gnotobiotic mice colonized with responder, but not non-responder, microbiomes. F. prausnitzii is sufficient to restore sulfasalazine protection from colitis in gnotobiotic mice colonized with non-responder microbiomes. These findings reveal a mechanistic link between the efficacy of sulfasalazine therapy and the gut microbiome with the potential to guide diagnostic and therapeutic approaches for IBD-pSpA.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Sulfasalazina/farmacología , Sulfasalazina/uso terapéutico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Resultado del Tratamiento , Butiratos
7.
Immunity ; 57(1): 14-27, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38198849

RESUMEN

Nutrition profoundly shapes immunity and inflammation across the lifespan of mammals, from pre- and post-natal periods to later life. Emerging insights into diet-microbiota interactions indicate that nutrition has a dominant influence on the composition-and metabolic output-of the intestinal microbiota, which in turn has major consequences for host immunity and inflammation. Here, we discuss recent findings that support the concept that dietary effects on microbiota-derived metabolites potently alter immune responses in health and disease. We discuss how specific dietary components and metabolites can be either pro-inflammatory or anti-inflammatory in a context- and tissue-dependent manner during infection, chronic inflammation, and cancer. Together, these studies emphasize the influence of diet-microbiota crosstalk on immune regulation that will have a significant impact on precision nutrition approaches and therapeutic interventions for managing inflammation, infection, and cancer immunotherapy.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Neoplasias , Animales , Inflamación , Reacciones Cruzadas , Neoplasias/terapia , Mamíferos
8.
Nat Immunol ; 24(11): 1879-1889, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37872315

RESUMEN

Gastrointestinal fungal dysbiosis is a hallmark of several diseases marked by systemic immune activation. Whether persistent pathobiont colonization during immune alterations and impaired gut barrier function has a durable impact on host immunity is unknown. We found that elevated levels of Candida albicans immunoglobulin G (IgG) antibodies marked patients with severe COVID-19 (sCOVID-19) who had intestinal Candida overgrowth, mycobiota dysbiosis and systemic neutrophilia. Analysis of hematopoietic stem cell progenitors in sCOVID-19 revealed transcriptional changes in antifungal immunity pathways and reprogramming of granulocyte myeloid progenitors (GMPs) for up to a year. Mice colonized with C. albicans patient isolates experienced increased lung neutrophilia and pulmonary NETosis during severe acute respiratory syndrome coronavirus-2 infection, which were partially resolved with antifungal treatment or by interleukin-6 receptor blockade. sCOVID-19 patients treated with tocilizumab experienced sustained reductions in C. albicans IgG antibodies titers and GMP transcriptional changes. These findings suggest that gut fungal pathobionts may contribute to immune activation during inflammatory diseases, offering potential mycobiota-immune therapeutic strategies for sCOVID-19 with prolonged symptoms.


Asunto(s)
COVID-19 , Micobioma , Humanos , Animales , Ratones , Antifúngicos , Disbiosis , Neutrófilos , Candida albicans , Inmunoglobulina G
9.
bioRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333296

RESUMEN

Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, displayed microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes previously shown to have immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. Here, we further characterized the functional properties of these bacteria. Enzymatic and metabolomic profiling revealed a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. These results provide functional insights into the microbiotas of an understudied population.

11.
J Crohns Colitis ; 17(5): 795-803, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-36322790

RESUMEN

BACKGROUND: Most Crohn's disease [CD] patients require surgery. Ileitis recurs after most ileocolectomies and is a critical determinant for outcomes. The impacts of ileocolectomy-induced bile acid [BA] perturbations on intestinal microbiota and inflammation are unknown. We characterized the relationships between ileocolectomy, stool BAs, microbiota and intestinal inflammation in inflammatory bowel disease [IBD]. METHODS: Validated IBD clinical and endoscopic assessments were prospectively collected. Stool primary and secondary BA concentrations were compared based on ileocolectomy and ileitis status. Primary BA thresholds for ileitis were evaluated. Metagenomic sequencing was use to profile microbial composition and function. Relationships between ileocolectomy, BAs and microbiota were assessed. RESULTS: In 166 patients, elevated primary and secondary BAs existed with ileocolectomy. With ileitis, only primary BAs [795 vs 398 nmol/g, p = 0.009] were higher compared to without ileitis. The optimal primary BA threshold [≥228 nmol/g] identified ileitis on multivariable analysis [odds ratio = 2.3, p = 0.04]. Microbial diversity, Faecalibacterium prausnitzii and O-acetylhomoserine aminocarboxypropyltransferase [MetY] were decreased with elevated primary BAs. Amongst ileocolectomy patients, only those with elevated primary BAs had diversity, F. prausnitzii and MetY reductions. Those with both ileocolectomy and intermediate [p = 0.002] or high [≥228 nmol/g, p = 9.1e-11]] primary BA concentrations had reduced F. prausnitzii compared to without ileocolectomy. Those with ileocolectomy and low [<29.2 nmol/g] primary BA concentrations had similar F. prausnitzii to those without ileocolectomy [p = 0.13]. MetY was reduced with ileitis [p = 0.02]. CONCLUSIONS: Elevated primary BAs were associated with ileitis, and reduced microbial diversity, F. prausnitzii abundance and enzymatic abundance of MetY [acetate and l-methionine-producing enzyme expressed by F. prausnitzii], and were the only factors associated with these findings after ileocolectomy.


Asunto(s)
Microbioma Gastrointestinal , Ileítis , Enfermedades Inflamatorias del Intestino , Humanos , Enfermedades Inflamatorias del Intestino/cirugía , Enfermedades Inflamatorias del Intestino/microbiología , Inflamación , Ileítis/cirugía , Ileítis/microbiología , Colectomía , Ácidos y Sales Biliares
12.
Nature ; 611(7936): 578-584, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36323778

RESUMEN

Dietary fibres can exert beneficial anti-inflammatory effects through microbially fermented short-chain fatty acid metabolites<sup>1,2</sup>, although the immunoregulatory roles of most fibre diets and their microbiota-derived metabolites remain poorly defined. Here, using microbial sequencing and untargeted metabolomics, we show that a diet of inulin fibre alters the composition of the mouse microbiota and the levels of microbiota-derived metabolites, notably bile acids. This metabolomic shift is associated with type 2 inflammation in the intestine and lungs, characterized by IL-33 production, activation of group 2 innate lymphoid cells and eosinophilia. Delivery of cholic acid mimics inulin-induced type 2 inflammation, whereas deletion of the bile acid receptor farnesoid X receptor diminishes the effects of inulin. The effects of inulin are microbiota dependent and were reproduced in mice colonized with human-derived microbiota. Furthermore, genetic deletion of a bile-acid-metabolizing enzyme in one bacterial species abolishes the ability of inulin to trigger type 2 inflammation. Finally, we demonstrate that inulin enhances allergen- and helminth-induced type 2 inflammation. Taken together, these data reveal that dietary inulin fibre triggers microbiota-derived cholic acid and type 2 inflammation at barrier surfaces with implications for understanding the pathophysiology of allergic inflammation, tissue protection and host defence.


Asunto(s)
Ácidos y Sales Biliares , Fibras de la Dieta , Microbioma Gastrointestinal , Inflamación , Inulina , Animales , Humanos , Ratones , Ácidos y Sales Biliares/metabolismo , Ácido Cólico/farmacología , Fibras de la Dieta/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Inmunidad Innata , Inflamación/inducido químicamente , Inflamación/clasificación , Inflamación/patología , Inulina/farmacología , Linfocitos/citología , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Metabolómica , Pulmón/efectos de los fármacos , Pulmón/patología , Intestinos/efectos de los fármacos , Intestinos/microbiología , Intestinos/patología , Interleucina-33/metabolismo , Eosinófilos/citología , Eosinófilos/efectos de los fármacos , Eosinófilos/inmunología
13.
Cell ; 185(22): 4170-4189.e20, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36240781

RESUMEN

Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Nociceptores/fisiología , Sustancia P , Disbiosis , Inflamación
14.
Nat Commun ; 13(1): 6239, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266345

RESUMEN

The systemic metabolic shifts that occur during aging and the local metabolic alterations of a tumor, its stroma and their communication cooperate to establish a unique tumor microenvironment (TME) fostering cancer progression. Here, we show that methylmalonic acid (MMA), an aging-increased oncometabolite also produced by aggressive cancer cells, activates fibroblasts in the TME, which reciprocally secrete IL-6 loaded extracellular vesicles (EVs) that drive cancer progression, drug resistance and metastasis. The cancer-associated fibroblast (CAF)-released EV cargo is modified as a result of reactive oxygen species (ROS) generation and activation of the canonical and noncanonical TGFß signaling pathways. EV-associated IL-6 functions as a stroma-tumor messenger, activating the JAK/STAT3 and TGFß signaling pathways in tumor cells and promoting pro-aggressive behaviors. Our findings define the role of MMA in CAF activation to drive metastatic reprogramming, unveiling potential therapeutic avenues to target MMA at the nexus of aging, the tumor microenvironment and metastasis.


Asunto(s)
Fibroblastos Asociados al Cáncer , Vesículas Extracelulares , Neoplasias , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Metilmalónico/metabolismo , Interleucina-6/metabolismo , Microambiente Tumoral , Neoplasias/patología , Vesículas Extracelulares/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
15.
Gut Microbes ; 14(1): 2105609, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35915556

RESUMEN

The gut microbiome is intricately coupled with immune regulation and metabolism, but its role in Coronavirus Disease 2019 (COVID-19) is not fully understood. Severe and fatal COVID-19 is characterized by poor anti-viral immunity and hypercoagulation, particularly in males. Here, we define multiple pathways by which the gut microbiome protects mammalian hosts from SARS-CoV-2 intranasal infection, both locally and systemically, via production of short-chain fatty acids (SCFAs). SCFAs reduced viral burdens in the airways and intestines by downregulating the SARS-CoV-2 entry receptor, angiotensin-converting enzyme 2 (ACE2), and enhancing adaptive immunity via GPR41 and 43 in male animals. We further identify a novel role for the gut microbiome in regulating systemic coagulation response by limiting megakaryocyte proliferation and platelet turnover via the Sh2b3-Mpl axis. Taken together, our findings have unraveled novel functions of SCFAs and fiber-fermenting gut bacteria to dampen viral entry and hypercoagulation and promote adaptive antiviral immunity.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Animales , Antivirales/uso terapéutico , Ácidos Grasos Volátiles , Masculino , Mamíferos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2
16.
Cell ; 185(3): 547-562.e22, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35051369

RESUMEN

Hundreds of microbiota genes are associated with host biology/disease. Unraveling the causal contribution of a microbiota gene to host biology remains difficult because many are encoded by nonmodel gut commensals and not genetically targetable. A general approach to identify their gene transfer methodology and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. We developed a pipeline that identifies the gene transfer methods for multiple nonmodel microbes spanning five phyla, and we demonstrated the utility of their genetic tools by modulating microbiome-derived short-chain fatty acids and bile acids in vitro and in the host. In a proof-of-principle study, by deleting a commensal gene for bile acid synthesis in a complex microbiome, we discovered an intriguing role of this gene in regulating colon inflammation. This technology will enable genetically engineering the nonmodel gut microbiome and facilitate mechanistic dissection of microbiota-host interactions.


Asunto(s)
Microbioma Gastrointestinal/genética , Genes Bacterianos , Animales , Ácidos y Sales Biliares/metabolismo , Sistemas CRISPR-Cas/genética , Clostridium/genética , Colitis/inducido químicamente , Colitis/microbiología , Colitis/patología , Sulfato de Dextran , Farmacorresistencia Microbiana/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Técnicas de Transferencia de Gen , Vida Libre de Gérmenes , Inflamación/patología , Intestinos/patología , Masculino , Metaboloma/genética , Metagenómica , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis Insercional/genética , Mutación/genética , ARN Ribosómico 16S/genética , Transcripción Genética
17.
Gastroenterology ; 162(1): 166-178, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34606847

RESUMEN

BACKGROUND & AIMS: Fecal microbiota transplantation (FMT) is an emerging treatment modality for ulcerative colitis (UC). Several randomized controlled trials have shown efficacy for FMT in the treatment of UC, but a better understanding of the transferable microbiota and their immune impact is needed to develop more efficient microbiome-based therapies for UC. METHODS: Metagenomic analysis and strain tracking was performed on 60 donor and recipient samples receiving FMT for active UC. Sorting and sequencing of immunoglobulin (Ig) A-coated microbiota (called IgA-seq) was used to define immune-reactive microbiota. Colonization of germ-free or genetically engineered mice with patient-derived strains was performed to determine the mechanism of microbial impact on intestinal immunity. RESULTS: Metagenomic analysis defined a core set of donor-derived transferable bacterial strains in UC subjects achieving clinical response, which predicted response in an independent trial of FMT for UC. IgA-seq of FMT recipient samples and gnotobiotic mice colonized with donor microbiota identified Odoribacter splanchnicus as a transferable strain shaping mucosal immunity, which correlated with clinical response and the induction of mucosal regulatory T cells. Colonization of mice with O splanchnicus led to an increase in Foxp3+/RORγt+ regulatory T cells, induction of interleukin (IL) 10, and production of short chain fatty acids, all of which were required for O splanchnicus to limit colitis in mouse models. CONCLUSIONS: This work provides the first evidence of transferable, donor-derived strains that correlate with clinical response to FMT in UC and reveals O splanchnicus as a key component promoting both metabolic and immune cell protection from colitis. These mechanistic features will help enable strategies to enhance the efficacy of microbial therapy for UC. Clinicaltrials.gov ID NCT02516384.


Asunto(s)
Bacteroidetes/inmunología , Colitis/terapia , Colon/microbiología , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Inmunoglobulina A/inmunología , Mucosa Intestinal/microbiología , Animales , Bacteroidetes/genética , Bacteroidetes/metabolismo , Ensayos Clínicos como Asunto , Colitis/inmunología , Colitis/metabolismo , Colitis/microbiología , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/microbiología , Colon/inmunología , Colon/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/metabolismo , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/inmunología , Vida Libre de Gérmenes , Humanos , Inmunidad Mucosa , Inmunoglobulina A/genética , Inmunoglobulina A/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Linfocitos Intraepiteliales/microbiología , Metagenoma , Metagenómica , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/microbiología , Resultado del Tratamiento
18.
Cell Host Microbe ; 29(3): 318-320, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33705700

RESUMEN

The gut microbiota regulates intestinal immunity, but whether immune activation reciprocally alters gut commensals is unknown. In this issue of Cell Host & Microbe, Becattini et al. used a reductionist approach, incorporating gnotobiotic mouse models and multi-omics analyses, to address how gut commensals respond and adapt to acute immune activation.


Asunto(s)
Microbioma Gastrointestinal , Animales , Vida Libre de Gérmenes , Ratones , Simbiosis
19.
Cell Host Microbe ; 29(4): 607-619.e8, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33539767

RESUMEN

Adherent-invasive E. coli (AIEC) are enriched in the intestinal microbiota of patients with Crohn's disease (CD) and promote intestinal inflammation. Yet, how AIEC metabolism of nutrients impacts intestinal homeostasis is poorly defined. Here, we show that AIEC encoding the large subunit of propanediol dehydratase (PduC), which facilitates the utilization of fucose fermentation product 1,2-propanediol, are increased in the microbiome of CD patients and drive AIEC-induced intestinal T cell inflammation. In murine models, CX3CR1+ mononuclear phagocytes (MNP) are required for PduC-dependent induction of T helper 17 (Th17) cells and interleukin-1ß (IL-1ß) production that leads to AIEC-induced inflammatory colitis. Activation of this inflammatory cascade requires the catalytic activity of PduC to generate propionate, which synergizes with lipopolysaccharide (LPS) to induce IL-1ß by MNPs. Disrupting fucose availability limits AIEC-induced propionate production and intestinal inflammation. These findings identify MNPs as metabolic sensors linking AIEC metabolism with intestinal inflammation and identify microbial metabolism as a potential therapeutic target in Crohn's disease treatment.


Asunto(s)
Enfermedad de Crohn/metabolismo , Infecciones por Escherichia coli/metabolismo , Escherichia coli/metabolismo , Inflamación/metabolismo , Intestinos/inmunología , Fagocitos/metabolismo , Glicoles de Propileno/metabolismo , Animales , Adhesión Bacteriana , Enfermedad de Crohn/microbiología , Infecciones por Escherichia coli/microbiología , Femenino , Interacciones Huésped-Patógeno , Humanos , Inmunidad , Interleucina-1beta , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Masculino , Ratones , Fagocitos/inmunología , Células Th17
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA