Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 176(1): e14206, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356346

RESUMEN

Aroma or fragrance in rice is a genetically controlled trait; Its high appreciation by consumers increases the rice market price. Previous studies have revealed that the rice aroma is controlled by a specific gene called BETAINE ALDEHYDE DEHYDROGENASE (OsBADH2), and mutation of this gene leads to the accumulation of an aromatic substance 2-acetyl-1-pyrroline (2-AP). The use of genetic engineering to produce aroma in commercial and cultivated hybrids is a contemporary need for molecular breeding. The current study reports the generation of aroma in the three-line hybrid restorer line Shu-Hui-313 (SH313). We created knock-out (KO) lines of OsBADH2 through the CRISPR/Cas9. The analysis of KO lines revealed a significantly increased content of 2AP in the grains compared with the control. However, other phenotypic traits (plant height, seed setting rate, and 1000-grain weight) were significantly decreased. These KO lines were crossed with a non-aromatic three-line hybrid rice male sterile line (Rong-7-A) to produce Rong-7-You-626 (R7Y626), R7Y627 and R7Y628. The measurement of 2-AP revealed significantly increased contents in these cross combinations. We compared the content of 2-AP in tissues at the booting stage. Data revealed that young spike stalk base contained the highest content of 2-AP and can be used for identification (by simple chewing) of aromatic lines under field conditions. In conclusion, our dataset offers a genetic source and illustrates the generation of aroma in non-aromatic hybrids, and outlines a straightforward identification under field conditions.


Asunto(s)
Betaína/análogos & derivados , Oryza , Oryza/genética , Sistemas CRISPR-Cas/genética , Odorantes , Genes de Plantas
2.
Rice (N Y) ; 16(1): 57, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071259

RESUMEN

Chlorophyll degradation is an important physiological process and is essential for plant growth and development. However, how chlorophyll degradation is controlled at the cellular and molecular level remains largely elusive. Pectin is a main component of the primary cell wall, and polygalacturonases (PGs) is a group of pectin-hydrolases that cleaves the pectin backbone and release oligogalacturonide. Whether and how PGs affect chlorophyll degradation metabolism and its association with ethylene (ETH) have not been reported before. Here, we report a novel function of PG in a mutant 'high chlorophyll content1' hcc1, which displayed a decrease in growth and yield. Our morphological, biochemical and genetic analyses of hcc1, knockout lines and complementation lines confirm the function of HCC1 in chlorophyll degradation. In hcc1, the PG activity, ETH content and D-galacturonic acid (D-GA) was significantly decreased and showed an increase in the thickness of the cell wall. Exogenous application of ETH and D-GA can increase ETH content and induce the expression of HCC1, which further can successfully induce the chlorophyll degradation in hcc1. Together, our data demonstrated a novel function of HCC1 in chlorophyll degradation via the ETH pathway.

3.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35409186

RESUMEN

Catalases (CATs) are important self-originating enzymes and are involved in many of the biological functions of plants. Multiple forms of CATs suggest their versatile role in lesion mimic mutants (LMMs), H2O2 homeostasis and abiotic and biotic stress tolerance. In the current study, we identified a large lesion mimic mutant9428 (llm9428) from Ethyl-methane-sulfonate (EMS) mutagenized population. The llm9428 showed a typical phenotype of LMMs including decreased agronomic yield traits. The histochemical assays showed decreased cell viability and increased reactive oxygen species (ROS) in the leaves of llm9428 compared to its wild type (WT). The llm9428 showed enhanced blast disease resistance and increased relative expression of pathogenesis-related (PR) genes. Studies of the sub-cellular structure of the leaf and quantification of starch contents revealed a significant decrease in starch granule formation in llm9428. Genetic analysis revealed a single nucleotide change (C > T) that altered an amino acid (Ala > Val) in the candidate gene (Os03g0131200) encoding a CATALASE C in llm9428. CRISPR-Cas9 targetted knockout lines of LLM9428/OsCATC showed the phenotype of LMMs and reduced starch metabolism. Taken together, the current study results revealed a novel role of OsCATC in starch metabolism in addition to validating previously studied functions of CATs.


Asunto(s)
Oryza , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Mutación , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo
4.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32209971

RESUMEN

Vacuolar invertase is involved in sugar metabolism and plays a crucial role in plant growth and development, thus regulating seed size. However, information linking vacuolar invertase and seed size in rice is limited. Here we characterized a small grain mutant sg2 (grain size on chromosome 2) that showed a reduced in grain size and 1000-grain weight compared to the wild type. Map-based cloning and genetic complementation showed that OsINV3 is responsible for the observed phenotype. Loss-of-function of OsINV3 resulted in grains of smaller size when compared to the wild type, while overexpression showed increased grain size. We also obtained a T-DNA insertion mutant of OsINV2, which is a homolog of OsINV3 and generated double knockout (KO) mutants of OsINV2 and OsINV3 using CRISPR/Cas9. Genetic data showed that OsINV2, that has no effect on grain size by itself, reduces grain length and width in the absence of OsINV3. Altered sugar content with increased sucrose and decreased hexose levels, as well as changes vacuolar invertase activities and starch constitution in INV3KO, INV2KO, INV3KOINV2KO mutants indicate that OsINV2 and OsINV3 affect sucrose metabolism in sink organs. In summary, we identified OsINV3 as a positive regulator of grain size in rice, and while OsINV2 has no function on grain size by itself. In the absence of OsINV3, it is possible to detect a role of OsINV2 in the regulation of grain size. Both OsINV3 and OsINV2 are involved in sucrose metabolism, and thus regulate grain size. Our findings increase our understanding of the role of OsINV3 and its homolog, OsINV2, in grain size development and also suggest a potential strategy to improve grain yield in rice.


Asunto(s)
Grano Comestible/genética , Genes de Plantas , Estudios de Asociación Genética , Familia de Multigenes , Oryza/genética , Carácter Cuantitativo Heredable , Clonación Molecular , Análisis Mutacional de ADN , Grano Comestible/metabolismo , Mutación , Semillas/genética
5.
Int J Mol Sci ; 20(10)2019 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-31109052

RESUMEN

Black and red rice are rich in both anthocyanin and proanthocyanin content, which belong to a large class of flavonoids derived from a group of phenolic secondary metabolites. However, the molecular pathways and mechanisms underlying the flavonoid biosynthetic pathway are far from clear. Therefore, this study was undertaken to gain insight into physiological factors that are involved in the flavonoid biosynthetic pathway in rice cultivars with red, black, and white colors. RNA sequencing of caryopsis and isobaric tags for relative and absolute quantification (iTRAQ) analyses have generated a nearly complete catalog of mRNA and expressed proteins in different colored rice cultivars. A total of 31,700 genes were identified, of which 3417, 329, and 227 genes were found specific for red, white, and black rice, respectively. A total of 13,996 unique peptides corresponding to 3916 proteins were detected in the proteomes of black, white, and red rice. Coexpression network analyses of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) among the different rice cultivars showed significant differences in photosynthesis and flavonoid biosynthesis pathways. Based on a differential enrichment analysis, 32 genes involved in the flavonoid biosynthesis pathway were detected, out of which only CHI, F3H, ANS, and FLS were detected by iTRAQ. Taken together, the results point to differences in flavonoid biosynthesis pathways among different colored rice cultivars, which may reflect differences in physiological functions. The differences in contents and types of flavonoids among the different colored rice cultivars are related to changes in base sequences of Os06G0162500, Os09G0455500, Os09G0455500, and Os10G0536400. Current findings expand and deepen our understanding of flavonoid biosynthesis and concurrently provides potential candidate genes for improving the nutritional qualities of rice.


Asunto(s)
Vías Biosintéticas , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/fisiología , Proteoma , Transcriptoma , Cromatografía Liquida , Biología Computacional/métodos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Metaboloma , Metabolómica/métodos , Proteómica/métodos , Espectrometría de Masas en Tándem
6.
BMC Plant Biol ; 18(1): 314, 2018 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-30497392

RESUMEN

BACKGROUND: Polyploidy, or whole-genome duplication (WGD) promotes genetic diversification in plants. However, whether WGD is accompanied by epigenetic regulation especially DNA methylation remains yet elusive. Methylation of different region in genomic DNA play discrete role in gene regulation and developmental processes in plants. RESULTS: In our study, we used an apomictic rice line (SARII-628) that produces twin seedlings of different ploidy for methylated DNA immunoprecipitation sequencing (MeDIP-seq). We compared the level of methylation and mRNA expression in three different (CG, CHG, and CHH) sequence contexts of promoter region among haploid (1X), diploid (2X), and triploid (3X) seedling. We used MeDIP-Seq analysis of 14 genes to investigate whole genome DNA methylation and found that relative level of DNA methylation across different ploidy was in following order e.g. diploid > triploid > haploid. GO functional classification of differentially methylated genes into 9 comparisons group of promoter, intergenic and intragenic region discovered, these genes were mostly enriched for cellular component, molecular function, and biological process. By the comparison of methylome data, digital gene expression (DGE), mRNA expression profile, and Q-PCR findings LOC_ Os07g31450 and LOC_ Os01g59320 were analyzed for BS-Seq (Bisulphite sequencing). CONCLUSIONS: We found that (1) The level of the promoter DNA methylation is negatively correlated with gene expression within each ploidy level. (2) Among all ploidy levels, CG sequence context had highest methylation frequency, and demonstrated that the high CG methylation did reduce gene expression change suggesting that DNA methylation exert repressive function and ensure genome stability during WGD. (3) Alteration in ploidy (from diploid to haploid, or diploid to triploid) reveals supreme changes in methylation frequency of CHH sequence context. Our finding will contribute an understanding towards lower stability of CHH sequence context and educate the effect of promoter region methylation during change in ploidy state in rice.


Asunto(s)
Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Oryza/genética , Ploidias , Haploidia , Repeticiones de Microsatélite/genética , Oryza/metabolismo , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Triploidía
7.
Front Plant Sci ; 9: 405, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29643863

RESUMEN

Lesion mimic mutants display spontaneous cell death, and thus are valuable for understanding the molecular mechanism of cell death and disease resistance. Although a lot of such mutants have been characterized in rice, the relationship between lesion formation and abscisic acid (ABA) synthesis pathway is not reported. In the present study, we identified a rice mutant, lesion mimic mutant 9150 (lmm9150), exhibiting spontaneous cell death, pre-harvest sprouting, enhanced growth, and resistance to rice bacterial and blast diseases. Cell death in the mutant was accompanied with excessive accumulation of H2O2. Enhanced disease resistance was associated with cell death and upregulation of defense-related genes. Map-based cloning identified a G-to-A point mutation resulting in a D-to-N substitution at the amino acid position 110 of OsABA2 (LOC_Os03g59610) in lmm9150. Knock-out of OsABA2 through CRISPR/Cas9 led to phenotypes similar to those of lmm9150. Consistent with the function of OsABA2 in ABA biosynthesis, ABA level in the lmm9150 mutant was significantly reduced. Moreover, exogenous application of ABA could rescue all the mutant phenotypes of lmm9150. Taken together, our data linked ABA deficiency to cell death and provided insight into the role of ABA in rice disease resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...