Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Psychiatry Res ; 337: 115951, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38735240

RESUMEN

Isolation of rodents throughout adolescence is known to induce many behavioral abnormalities which resemble neuropsychiatric disorders. Separately, this paradigm has also been shown to induce long-term metabolic changes consistent with a pre-diabetic state. Here, we investigate changes in central serotonin (5-HT) and glucagon-like peptide 1 (GLP-1) neurobiology that dually accompany behavioral and metabolic outcomes following social isolation stress throughout adolescence. We find that adolescent-isolation mice exhibit elevated blood glucose levels, impaired peripheral insulin signaling, altered pancreatic function, and fattier body composition without changes in bodyweight. These mice further exhibited disruptions in sleep and enhanced nociception. Using bulk and spatial transcriptomic techniques, we observe broad changes in neural 5-HT, GLP-1, and appetitive circuits. We find 5-HT neurons of adolescent-isolation mice to be more excitable, transcribe fewer copies of Glp1r (mRNA; GLP-1 receptor), and demonstrate resistance to the inhibitory effects of the GLP-1R agonist semaglutide on action potential thresholds. Surprisingly, we find that administration of semaglutide, commonly prescribed to treat metabolic syndrome, induced deficits in social interaction in group-housed mice and rescued social deficits in isolated mice. Overall, we find that central 5-HT circuitry may simultaneously influence mental well-being and metabolic health in this model, via interactions with GLP-1 and proopiomelanocortin circuitry.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38738295

RESUMEN

Obesity is a major public health issue due to its association with type 2 diabetes, hypertension, and other cardiovascular risks. The BBSome, a complex of 8 conserved Bardet-Biedl Syndrome (BBS) proteins, has emerged as a key regulator of energy and glucose homeostasis as well as cardiovascular function. However, the importance of adipocyte BBSome in controlling these physiological processes is not clear. Here, we show that adipocyte-specific constitutive disruption of the BBSome through selective deletion of the Bbs1 gene (AdipoCre/Bbs1fl/fl mice) does not affect body weight under normal chow or high fat & high sucrose diet (HFHSD). However, constitutive BBSome defiency caused impairment in glucose tolerance and insulin sensitivity. Similar phenotypes were observed after inducible adipocyte-specific constitutive disruption of the BBSome (AdipoCreERT2/Bbs1fl/fl mice). Interestingly, a significant increase in renal sympathetic nerve activity, measured using multifiber recording in the conscious state, was observed in AdipoCre/Bbs1fl/fl mice on both chow and HFHSD. A significant increase in tail-cuff arterial pressure was also observed in chow-fed AdipoCre/Bbs1fl/fl mice, but this was not reproduced when arterial pressure was measured by radiotelemetry. Moreover, AdipoCre/Bbs1fl/fl mice had no significant alterations in vascular reactivity. On the other hand, AdipoCre/Bbs1fl/fl mice displayed impaired baroreceptor reflex sensitivity when fed HFHSD, but not on normal chow. Taken together, these data highlight the relevance of the adipocyte BBSome for the regulation of glucose homeostasis, sympathetic traffic. The BBSome also contribute to baroreflex sensitivity under HFHSD, but not normal chow.

3.
Function (Oxf) ; 5(1): zqad070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38223458

RESUMEN

The BBSome, a complex of several Bardet-Biedl syndrome (BBS) proteins including BBS1, has emerged as a critical regulator of energy homeostasis. Although the BBSome is best known for its involvement in cilia trafficking, through a process that involve BBS3, it also regulates the localization of cell membrane receptors underlying metabolic regulation. Here, we show that inducible Bbs1 gene deletion selectively in proopiomelanocortin (POMC) neurons cause a gradual increase in body weight, which was associated with higher fat mass. In contrast, inducible deletion of Bbs3 gene in POMC neurons failed to affect body weight and adiposity. Interestingly, loss of BBS1 in POMC neurons led to glucose intolerance and insulin insensitivity, whereas BBS3 deficiency in these neurons is associated with slight impairment in glucose handling, but normal insulin sensitivity. BBS1 deficiency altered the plasma membrane localization of serotonin 5-HT2C receptor (5-HT2CR) and ciliary trafficking of neuropeptide Y2 receptor (NPY2R).In contrast, BBS3 deficiency, which disrupted the ciliary localization of the BBSome, did not interfere with plasma membrane expression of 5-HT2CR, but reduced the trafficking of NPY2R to cilia. We also show that deficiency in BBS1, but not BBS3, alters mitochondria dynamics and decreased total and phosphorylated levels of dynamin-like protein 1 (DRP1) protein. Importantly, rescuing DRP1 activity restored mitochondria dynamics and localization of 5-HT2CR and NPY2R in BBS1-deficient cells. The contrasting effects on energy and glucose homeostasis evoked by POMC neuron deletion of BBS1 versus BBS3 indicate that BBSome regulation of metabolism is not related to its ciliary function in these neurons.


Asunto(s)
Síndrome de Bardet-Biedl , Peso Corporal , Cilios , Proopiomelanocortina , Humanos , Cilios/genética , Glucosa/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Neuronas/metabolismo , Proopiomelanocortina/genética , Transporte de Proteínas/genética , Serotonina/metabolismo , Animales
4.
Am J Physiol Endocrinol Metab ; 325(6): E711-E722, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37909854

RESUMEN

The BBSome is a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins including BBS1. Humans and mice lacking a functional BBSome display obesity and type 2 diabetes, highlighting the importance of this protein complex for metabolic regulation. However, the contribution of the BBSome in insulin-sensitive tissues such as skeletal muscle and liver to metabolic regulation is ill-defined. Here, we show that disruption of the BBSome through Bbs1 gene deletion in the skeletal muscle had no effect on body weight or glucose handling, but improved insulin sensitivity of female mice without changing insulin receptor signaling. Interestingly, when fed an obesogenic diet, male mice lacking the Bbs1 gene in skeletal muscle exhibited heightened insulin sensitivity despite the comparable weight gain and glucose tolerance relative to controls. On the other hand, normal chow-fed mice missing the Bbs1 gene in hepatocytes displayed increased body weight, as well as impaired glucose handling and insulin sensitivity. This was associated with attenuated insulin signaling in liver and hepatocytes, but not skeletal muscle and white adipose tissue. Moreover, hepatocytes lacking the Bbs1 gene displayed significant reduction in plasma membrane insulin receptor levels due to the mitochondrial dysfunction evoked by loss of the BBSome. Together, these findings demonstrate that myocyte BBSome is minimally involved in metabolic regulation, whereas the hepatic BBSome plays a critical role in the control of energy homeostasis and insulin sensitivity through its requirement for insulin receptor trafficking.NEW & NOTEWORTHY The ongoing epidemic of obesity and associated illnesses highlights the need to understand the biological processes that regulate energy balance. Here, we identified an important role for a protein complex called BBSome in the control of hepatic function. We show that the liver BBSome is necessary to maintain body weight and blood glucose levels due to its requirements to generate energy and detect insulin, a hormone that is essential for metabolic regulation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Insulinas , Humanos , Ratones , Masculino , Femenino , Animales , Proteínas Asociadas a Microtúbulos/metabolismo , Receptor de Insulina , Resistencia a la Insulina/genética , Diabetes Mellitus Tipo 2/genética , Obesidad/genética , Obesidad/metabolismo , Peso Corporal/genética , Hígado/metabolismo , Glucosa , Músculo Esquelético/metabolismo
5.
bioRxiv ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398179

RESUMEN

In 2020, stay-at-home orders were implemented to stem the spread of SARS-CoV-2 worldwide. Social isolation can be particularly harmful to children and adolescents-during the pandemic, the prevalence of obesity increased by ∼37% in persons aged 2-19. Obesity is often comorbid with type 2 diabetes, which was not assessed in this human pandemic cohort. Here, we investigated whether male mice isolated throughout adolescence develop type 2 diabetes in a manner consistent with human obesity-induced diabetes, and explored neural changes that may underlie such an interaction. We find that isolating C57BL/6J mice throughout adolescence is sufficient to induce type 2 diabetes. We observed fasted hyperglycemia, diminished glucose clearance in response to an insulin tolerance test, decreased insulin signaling in skeletal muscle, decreased insulin staining of pancreatic islets, increased nociception, and diminished plasma cortisol levels compared to group-housed control mice. Using Promethion metabolic phenotyping chambers, we observed dysregulation of sleep and eating behaviors, as well as a time-dependent shift in respiratory exchange ratio of the adolescent-isolation mice. We profiled changes in neural gene transcription from several brain areas and found that a neural circuit between serotonin-producing and GLP-1-producing neurons is affected by this isolation paradigm. Overall, spatial transcription data suggest decreased serotonin neuron activity (via decreased GLP-1-mediated excitation) and increased GLP-1 neuron activity (via decreased serotonin-mediated inhibition). This circuit may represent an intersectional target to further investigate the relationship between social isolation and type 2 diabetes, as well as a pharmacologically-relevant circuit to explore the effects of serotonin and GLP-1 receptor agonists. Article Highlights: Isolating C57BL/6J mice throughout adolescence is sufficient to induce type 2 diabetes, presenting with fasted hyperglycemia.Adolescent-isolation mice have deficits in insulin responsiveness, impaired peripheral insulin signaling, and decreased pancreatic insulin production.Transcriptional changes across the brain include the endocannabinoid, serotonin, and GLP-1 neurotransmitters and associated receptors. The neural serotonin/GLP-1 circuit may represent an intersectional target to further investigate the relationship between social isolation and type 2 diabetes. Serotonin-producing neurons of adolescent-isolation mice produce fewer transcripts for the GLP-1 receptor, and GLP-1 neurons produce fewer transcripts for the 5-HT 1A serotonin receptor.

6.
JCI Insight ; 8(6)2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36787197

RESUMEN

The molecular clock machinery regulates several homeostatic rhythms, including glucose metabolism. We previously demonstrated that Roux-en-Y gastric bypass (RYGB) has a weight-independent effect on glucose homeostasis and transiently reduces food intake. In this study we investigate the effects of RYGB on diurnal eating behavior as well as on the molecular clock and this clock's requirement for the metabolic effects of this bariatric procedure in obese mice. We find that RYGB reversed the high-fat diet-induced disruption in diurnal eating pattern during the early postsurgery phase of food reduction. Dark-cycle pair-feeding experiments improved glucose tolerance to the level of bypass-operated animals during the physiologic fasting phase (Zeitgeber time 2, ZT2) but not the feeding phase (ZT14). Using a clock gene reporter mouse model (mPer2Luc), we reveal that RYGB induced a liver-specific phase shift in peripheral clock oscillation with no changes to the central clock activity within the suprachiasmatic nucleus. In addition, we show that weight loss effects were attenuated in obese ClockΔ19 mutant mice after RYGB that also failed to improve glucose metabolism after surgery, specifically hepatic glucose production. We conclude that RYGB reprograms the peripheral clock within the liver early after surgery to alter diurnal eating behavior and regulate hepatic glucose flux.


Asunto(s)
Derivación Gástrica , Resistencia a la Insulina , Ratones , Animales , Glucosa/metabolismo , Derivación Gástrica/métodos , Glucemia/metabolismo , Resistencia a la Insulina/fisiología , Conducta Alimentaria , Hígado/metabolismo
7.
Am J Physiol Regul Integr Comp Physiol ; 324(2): R161-R170, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36534590

RESUMEN

Bsardet Biedl syndrome (BBS) is a genetic condition associated with various clinical features including cutaneous disorders and certain autoimmune and inflammatory diseases pointing to a potential role of BBS proteins in the regulation of immune function. BBS1 protein, which is a key component of the BBSome, a protein complex involved in the regulation of cilia function and other cellular processes, has been implicated in the immune synapse assembly by promoting the centrosome polarization to the antigen-presenting cells. Here, we assessed the effect of disrupting the BBSome, through Bbs1 gene deletion, in T cells. Interestingly, mice lacking the Bbs1 gene specifically in T cells (T-BBS1-/-) displayed normal body weight, adiposity, and glucose handling, but have smaller spleens. However, T-BBS1-/- mice had no change in the proportion and absolute number of B cells and T cells in the spleen and lymph nodes. There was also no alteration in the CD4/CD8 lineage commitment or survival in the thymus of T-BBS1-/- mice. On the other hand, T-BBS1-/- mice treated with Imiquimod dermally exhibited a significantly higher percentage of CD3-positive splenocytes that was due to CD4 but not CD8 T cell predominance. Notably, we found that T-BBS1-/- mice had significantly decreased wound closure, an effect that was more pronounced in males indicating that the BBSome plays an important role in T cell-mediated skin repair. Together, these findings implicate the BBSome in the regulation of selective functions of T cells.


Asunto(s)
Cilios , Proteínas Asociadas a Microtúbulos , Animales , Masculino , Ratones , Adiposidad , Cilios/metabolismo , Cilios/patología , Inmunidad/genética , Proteínas Asociadas a Microtúbulos/genética , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo
8.
Mol Metab ; 67: 101654, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36513220

RESUMEN

OBJECTIVE: The essential role of mitochondria in regulation of metabolic function and other physiological processes has garnered enormous interest in understanding the mechanisms controlling the function of this organelle. We assessed the role of the BBSome, a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins, in the control of mitochondria dynamic and function. METHODS: We used a multidisciplinary approach that include CRISPR/Cas9 technology-mediated generation of a stable Bbs1 gene knockout hypothalamic N39 neuronal cell line. We also analyzed the phenotype of BBSome deficient mice in presence or absence of the gene encoding A-kinase anchoring protein 1 (AKAP1). RESULTS: Our data show that the BBSome play an important role in the regulation of mitochondria dynamics and function. Disruption of the BBSome cause mitochondria hyperfusion in cell lines, fibroblasts derived from patients as well as in hypothalamic neurons and brown adipocytes of mice. The morphological changes in mitochondria translate into functional abnormalities as indicated by the reduced oxygen consumption rate and altered mitochondrial distribution and calcium handling. Mechanistically, we demonstrate that the BBSome modulates the activity of dynamin-like protein 1 (DRP1), a key regulator of mitochondrial fission, by regulating its phosphorylation and translocation to the mitochondria. Notably, rescuing the decrease in DRP1 activity through deletion of one copy of the gene encoding AKAP1 was effective to normalize the defects in mitochondrial morphology and activity induced by BBSome deficiency. Importantly, this was associated with improvement in several of the phenotypes caused by loss of the BBSome such as the neuroanatomical abnormalities, metabolic alterations and obesity highlighting the importance of mitochondria defects in the pathophysiology of BBS. CONCLUSIONS: These findings demonstrate a critical role of the BBSome in the modulation of mitochondria function and point to mitochondrial defects as a key disease mechanism in BBS.


Asunto(s)
Síndrome de Bardet-Biedl , Ratones , Animales , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Obesidad/metabolismo , Proteínas , Línea Celular , Mitocondrias/metabolismo
10.
Mol Metab ; 59: 101465, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35218946

RESUMEN

OBJECTIVE: Bone morphogenetic protein 8B (BMP8B) plays a major role in the regulation of energy homeostasis by modulating brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. Here, we investigated whether BMP8B's role in metabolism is affected by obesity and the possible molecular mechanisms underlying that action. METHODS: Central treatments with BMP8B were performed in rats fed a standard (SD) and high-fat diet (HFD), as well as in genetically modified mice. Energy balance studies, infrared thermographic analysis of BAT and molecular analysis of the hypothalamus, BAT and WAT were carried out. RESULTS: We show for the first time that HFD-induced obesity elicits resistance to the central actions of BMP8B on energy balance. This obesity-induced BMP8B resistance is explained by i) lack of effects on AMP-activated protein kinase (AMPK) signaling, ii) decreased BMP receptors signaling and iii) reduced expression of Bardet-Biedl Syndrome 1 (BBS1) protein, a key component of the protein complex BBSome in the ventromedial nucleus of the hypothalamus (VMH). The possible mechanistic involvement of BBS1 in this process is demonstrated by lack of a central response to BMP8B in mice carrying a single missense disease-causing mutation in the Bbs1 gene. CONCLUSIONS: Overall, our data uncover a new mechanism of central resistance to hormonal action that may be of relevance in the pathophysiology of obesity.


Asunto(s)
Tejido Adiposo Pardo , Proteínas Morfogenéticas Óseas , Termogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Ratones , Obesidad/metabolismo , Ratas , Termogénesis/fisiología
11.
Mol Metab ; 53: 101308, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34303879

RESUMEN

OBJECTIVES: Endothelial cells that line the entire vascular system play a pivotal role in the control of various physiological processes, including metabolism. Additionally, endothelial dysfunction is associated with many pathological conditions, including obesity. Here, we assessed the role of the BBSome, a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins in endothelial cells. METHODS: We studied the effects of BBSome disruption in endothelial cells on vascular function, body weight, glucose homeostasis, and the liver and retina. For this, we generated mice with selective BBSome disruption in endothelial cells through Bbs1 gene deletion. RESULTS: We found that endothelial cell-specific BBSome disruption causes endothelial dysfunction, as indicated by the impaired acetylcholine-induced vasorelaxation in both the aorta and mesenteric artery. This was associated with an increase in the contractile response to thromboxane A2 receptor agonist (U46619) in the mesenteric artery. Mechanistically, we demonstrated that mice lacking the Bbs1 gene in endothelial cells show elevated vascular angiotensinogen gene expression, implicating renin-angiotensin system activation in the vascular changes evoked by endothelial BBSome deficiency. Strikingly, our data indicate that endothelial BBSome deficiency increases body weight and fat mass and causes hepatosteatosis along with alterations in hepatic expression of lipid metabolism-related genes and metabolomics profile. In addition, electroretinogram and optical coherence tomography analyses revealed functional and structural abnormalities in the retina, evoked by absence of the endothelial BBSome. CONCLUSIONS: Our findings demonstrate that the BBSome in endothelial cells is required for the regulation of vascular function, adiposity, hepatic lipid metabolism, and retinal function.


Asunto(s)
Células Endoteliales/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Retina/metabolismo , Animales , Peso Corporal , Femenino , Masculino , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Transgénicos
12.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R228-R237, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34189960

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) signaling complex is emerging as a critical regulator of cardiovascular function with alterations in this pathway implicated in cardiovascular diseases. In this study, we used animal models and human tissues to examine the role of vascular mTORC1 signaling in the endothelial dysfunction associated with obesity. In mice, obesity induced by high-fat/high-sucrose diet feeding for ∼2 mo resulted in aortic endothelial dysfunction without appreciable changes in vascular mTORC1 signaling. On the other hand, chronic high-fat diet feeding (45% or 60% kcal: ∼9 mo) in mice resulted in endothelial dysfunction associated with elevated vascular mTORC1 signaling. Endothelial cells and visceral adipose vessels isolated from obese humans display a trend toward elevated mTORC1 signaling. Surprisingly, genetic disruption of endothelial mTORC1 signaling through constitutive or tamoxifen inducible deletion of endothelial Raptor (critical subunit of mTORC1) did not prevent or rescue the endothelial dysfunction associated with high-fat diet feeding in mice. Endothelial mTORC1 deficiency also failed to reverse the endothelial dysfunction evoked by a high-fat/high-sucrose diet in mice. Taken together, these data show increased vascular mTORC1 signaling in obesity, but this vascular mTORC1 activation appears not to be required for the development of endothelial impairment in obesity.


Asunto(s)
Endotelio Vascular/enzimología , Diana Mecanicista del Complejo 1 de la Rapamicina/deficiencia , Obesidad/prevención & control , Grasa Subcutánea/irrigación sanguínea , Vasodilatación , Animales , Aorta Torácica/enzimología , Aorta Torácica/fisiopatología , Estudios de Casos y Controles , Dieta Alta en Grasa , Sacarosa en la Dieta , Modelos Animales de Enfermedad , Endotelio Vascular/fisiopatología , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Arterias Mesentéricas/enzimología , Arterias Mesentéricas/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/enzimología , Obesidad/genética , Obesidad/fisiopatología , Proteína Reguladora Asociada a mTOR/deficiencia , Proteína Reguladora Asociada a mTOR/genética , Transducción de Señal
15.
Mol Metab ; 48: 101211, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33722691

RESUMEN

OBJECTIVES: The hypothalamic ventromedial nucleus (VMH) plays a major role in metabolic control, but the molecular mechanisms involved remain poorly defined. We analyzed the relevance of the BBSome, a protein complex composed of 8 Bardet-Biedl syndrome (BBS) proteins including BBS1, in VMH steroidogenic factor 1 (SF1) neurons for the control of energy homeostasis and related physiological processes. METHODS: We generated mice bearing selective BBSome disruption, through Bbs1 gene deletion, in SF1 neurons (SF1Cre/Bbs1fl/fl). We analyzed the consequence on body weight, glucose homeostasis, and cardiovascular autonomic function of BBSome loss in SF1 neurons. RESULTS: SF1Cre/Bbs1fl/fl mice had increased body weight and adiposity under normal chow conditions. Food intake, energy absorption, and digestive efficiency were not altered by Bbs1 gene deletion in SF1 neurons. SF1Cre/Bbs1fl/fl mice exhibited lower energy expenditure, particularly during the dark cycle. Consistent with this finding, SF1Cre/Bbs1fl/fl mice displayed reduced sympathetic nerve traffic and expression of markers of thermogenesis in brown adipose tissue. SF1Cre/Bbs1fl/fl mice also had lower sympathetic nerve activity to subcutaneous white adipose tissue that was associated with a protein expression profile that promotes lipid accumulation. Notably, despite obesity and hyperinsulinemia, SF1Cre/Bbs1fl/fl mice did not exhibit significant changes in glucose metabolism, insulin sensitivity, blood pressure, and baroreflex sensitivity. CONCLUSIONS: Our findings demonstrate that the SF1 neuron BBSome is necessary for the regulation of energy homeostasis through modulation of the activity of the sympathetic nervous system and that the SF1 neuron BBSome is required for the development of obesity-related comorbidities.


Asunto(s)
Eliminación de Gen , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Factores de Empalme de ARN/metabolismo , Transducción de Señal/genética , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Adiposidad/genética , Animales , Peso Corporal/genética , Comorbilidad , Ingestión de Energía/genética , Metabolismo Energético/genética , Femenino , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/genética , Regiones Promotoras Genéticas , Factores de Empalme de ARN/genética , Núcleo Hipotalámico Ventromedial/metabolismo
16.
Hypertension ; 77(2): 594-604, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33356400

RESUMEN

mTORC1 (Mechanistic target of rapamycin complex 1) serves as a molecular hub and intracellular energy sensor that regulate various cellular processes. Emerging evidence points to mTORC1 signaling as a critical regulator of cardiovascular function with implications for cardiovascular disease. Here, we show that selective disruption of mTORC1, through conditional Raptor gene deletion, in endothelial or smooth muscle cells alter vascular function. Endothelial cell-specific Raptor deletion results in reduced relaxation responses evoked by acetylcholine in the aorta but not in the mesenteric artery. Of note, endothelial-specific Raptor deletion did not affect endothelial-independent vasorelaxation nor the contractile responses of the aorta or mesenteric artery. Interestingly, endothelial Raptor haploinsufficiency did not alter vascular endothelial function but attenuated the endothelial dysfunction evoked by angiotensin II. Smooth muscle cell-specific conditional deletion of Raptor reduces both endothelial- and smooth muscle-dependent relaxation responses as well as receptor-dependent and -independent contractility in the aorta. This was associated with activation of autophagy signaling. Notably, the changes in vascular function evoked by endothelial and smooth muscle Raptor deletion were independent of changes in blood pressure and heart rate. Together, these data suggest that vascular mTORC1 signaling is a critical regulator of vascular endothelial and smooth muscle function. mTORC1 signaling may represent a potential target for the treatment of vascular diseases associated with altered mTORC1 activity.


Asunto(s)
Aorta/metabolismo , Células Endoteliales/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Arterias Mesentéricas/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Aorta/efectos de los fármacos , Presión Sanguínea/fisiología , Eliminación de Gen , Frecuencia Cardíaca/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Arterias Mesentéricas/efectos de los fármacos , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Transducción de Señal/fisiología
18.
Cell Metab ; 32(4): 561-574.e7, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33027675

RESUMEN

Aberrant redox signaling underlies the pathophysiology of many chronic metabolic diseases, including type 2 diabetes (T2D). Methodologies aimed at rebalancing systemic redox homeostasis have had limited success. A noninvasive, sustained approach would enable the long-term control of redox signaling for the treatment of T2D. We report that static magnetic and electric fields (sBE) noninvasively modulate the systemic GSH-to-GSSG redox couple to promote a healthier systemic redox environment that is reducing. Strikingly, when applied to mouse models of T2D, sBE rapidly ameliorates insulin resistance and glucose intolerance in as few as 3 days with no observed adverse effects. Scavenging paramagnetic byproducts of oxygen metabolism with SOD2 in hepatic mitochondria fully abolishes these insulin sensitizing effects, demonstrating that mitochondrial superoxide mediates induction of these therapeutic changes. Our findings introduce a remarkable redox-modulating phenomenon that exploits endogenous electromagneto-receptive mechanisms for the noninvasive treatment of T2D, and potentially other redox-related diseases.


Asunto(s)
Diabetes Mellitus Tipo 2/terapia , Campos Electromagnéticos/efectos adversos , Animales , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Homeostasis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Células Tumorales Cultivadas
19.
Hypertension ; 75(4): 1082-1090, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32148123

RESUMEN

The BBSome, a complex of 8 BBS (Bardet-Biedl syndrome) proteins known for its role in the control of cilia function and other cellular processes, has been implicated in blood pressure control, but the underlying mechanisms are not fully understood. Here, we show that neuronal BBSome plays an important role in blood pressure regulation. Targeted inactivation of the BBSome in the nervous system through Bbs1 gene deletion causes sympathetically mediated increase in blood pressure in mice. This phenotype is reproduced by selective ablation of the Bbs1 gene from the LRb (leptin receptor)-expressing neurons. Strikingly, the well-known role of the BBSome in the regulation of cilia formation and function is unlikely to account for the prohypertensive effect of BBSome inactivation as disruption of the IFT (intraflagellar transport) machinery required for ciliogenesis by deleting the Ift88 gene in LRb neurons had no effect on arterial pressure and sympathetic nerve activity. Furthermore, we found that Bbs1 gene deletion from AgRP (agouti-related protein) neurons or POMC (proopiomelanocortin) neurons increased renal and splanchnic sympathetic nerve activity without altering blood pressure. This lack of blood pressure increase despite the sympathetic overdrive may be explained by vascular adrenergic desensitization as indicated by the reduced vascular contractile response evoked by phenylephrine and the decreased expression of adrenergic receptors. Our results identify the neuronal BBSome as a new player in hemodynamic, sympathetic, and vascular regulation, in a manner independent of cilia.


Asunto(s)
Síndrome de Bardet-Biedl/metabolismo , Presión Sanguínea/genética , Proteínas del Citoesqueleto/metabolismo , Neuronas/metabolismo , Sistema Nervioso Simpático/metabolismo , Animales , Proteínas del Citoesqueleto/genética , Frecuencia Cardíaca/genética , Ratones , Ratones Noqueados , Proopiomelanocortina/metabolismo , Transporte de Proteínas/fisiología , Receptores de Leptina/metabolismo
20.
Hypertension ; 74(4): 817-825, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31422694

RESUMEN

The BBSome-a complex consisting of 8 Bardet-Biedl syndrome proteins-is involved in the regulation of various cellular processes. Recently, the BBSome complex has emerged as an important regulator of cardiovascular function with implications for disease. In this study, we examined the role of the BBSome in vascular smooth muscle and its effects on the regulation of cardiovascular function. Smooth muscle-specific disruption of the BBSome through tamoxifen-inducible deletion of Bbs1 gene-a critical component of the BBSome complex-reduces relaxation and enhances contractility of vascular rings and increases aortic stiffness independent of changes in arterial blood pressure. Mechanistically, we demonstrate that smooth muscle Bbs1 gene deletion increases vascular angiotensinogen gene expression implicating the renin-angiotensin system in these altered cardiovascular responses. Additionally, we report that smooth muscle-specific Bbs1 knockout mice demonstrate enhanced ET-1 (endothelin-1)-induced contractility of mesenteric arteries-an effect reversed by blockade of the AT1 (angiotensin type 1 receptor) with losartan. These findings highlight the importance of the smooth muscle BBSome in the control of vascular function and arterial stiffness through modulation of renin-angiotensin system signaling.


Asunto(s)
Presión Sanguínea/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Rigidez Vascular/fisiología , Angiotensinógeno/genética , Angiotensinógeno/metabolismo , Animales , Aorta/fisiología , Arterias Mesentéricas/fisiología , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Vasodilatación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...