Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(21): 9539-9551, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38380592

RESUMEN

The reactivity of the rare earth metal alkyl complexes LRE(CH2SiMe3)(THF)2 (1RE) [RE = Y (1Y), Yb (1Yb), Lu (1Lu); L = 2,5-[(2-pyrrolyl)CPh2]2(N-methylpyrrole)] with various nitriles and isonitriles has been fully developed. Treatment of the yttrium monoalkyl complex (1Y) with 2 equiv of aromatic nitriles afforded the symmetric trisubstituted ß-diketiminato yttrium complexes (2Y(H), 2Y(Me), and 2Y(F)) through successive cyano group insertion into the RE-C bond and 1,3-H shift or the unsymmetric trisubstituted ß-diketiminato yttrium complex (3Y) unexpectedly via a 1,3-SiMe3 shift when 4-(trifluoromethyl)benzonitrile was used in this reaction under the same conditions. By treating 1Y with 2 equiv of tolyl acetonitrile, an activation of the sp3 C-H bond occurred to form the corresponding ß-aryl keteniminato complexes 4Y(p-tol) and 4Y(m-tol). Remarkably, a heteroleptic cleavage of the CO-CN bond took place in the reaction of 1Y with benzoyl nitrile, affording the unsymmetric trinuclear yttrium complex 5Y bridged by three cyanide groups. Dinuclear ytterbium and lutetium complexes 6Yb and 6Lu containing a functionalized isoindole fragment were synthesized from the reactions of 1 with phthalonitrile by tandem insertion and cyclization. Further studies indicated that the temperature and stoichiometric ratio have a great influence on the reactivity patterns between the reactions of 1RE with benzylisonitrile: two tetrasubstituted ß-diketiminato complexes 8 and 9 were obtained at -30 °C, and tetrasubstituted imidazolyl yttrium and lutetium complexes 7 were isolated at elevated temperature, respectively. In addition, the tetrasubstituted ß-diketiminato complexes 8 and 9 could be irreversibly converted to the cyclization products 7 by elevating the reaction temperature not only on the NMR scale but also on the preparative scale. Notably, when the phenyl isonitrile instead of benzyl isonitrile was reacted with 1Yb, a 2,3-functionalized indolyl ytterbium complex 10Yb was isolated.

2.
Dalton Trans ; 53(1): 267-275, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38038403

RESUMEN

A series of unsymmetric tetradentate ß-diketiminato rare-earth metal monoalkyl complexes were synthesized, and their catalytic behavior has been well developed. Indole-incorporated ß-diketiminato proligands H2L (L = MeC(NDipp)CHC(Me)NCH2CH2-3-(1-R-C8H4N), R = CH2-(2-C4H7O), L1; R = (CH2)2OMe, L2; Dipp = 2,6-iPr2C6H3) were prepared by the reaction of an arylamino-enone with 1-substituted-tryptamine in good yields. Treatment of the proligands with the rare-earth metal trialkyl complexes RE(CH2SiMe3)3(THF)2 generated the corresponding unsymmetric N,N,C,O-tetradentate ß-diketiminato rare-earth metal monoalkyl complexes LRE(CH2SiMe3) (L1, RE = Y (1a), Gd (1b), Yb (1c), Lu (1d); L2, RE = Y (2a), Gd (2b), Yb (2c), and Lu(2d)). During the process, the activation of the sp2 C-H bond at the 2-position of the indole ring led to the formation of an unprecedented ß-diketiminato dianion L2-, bonding to the rare-earth metal ions in a chelating N,N,C,O-tetradentate manner. Further studies indicated that these tetradentate rare-earth metal complexes could initiate the Oppenauer oxidation of secondary alcohols into the corresponding ketones in high yields. In the case of primary alcohols, a tandem Oppenauer oxidation and cross-aldol condensation occurred unexpectedly. Various α-mono-substituted benzylidene acetones, α,α'-bis-substituted benzylidene acetones and cyclohexanones were obtained under mild conditions only by controlling the molar ratio of alcohols to ketones. Notably, all these alkenylation ketones exhibited exclusive E configuration.

3.
Chem Commun (Camb) ; 59(82): 12330-12333, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37753618

RESUMEN

Singly and doubly quinoline-fused BODIPYs were effectively synthesized through a reaction sequence consisting of the reduction of nitrophenyl-substituted BODIPYs and subsequent Pictet-Spengler cyclization. The combination of the BODIPY core and fused quinoline rings imposed significantly twisted conformations in the quinoline-fused BODIPYs (around 20.0° deviation from coplanarity obtained from X-ray crystal structure analysis). These twisted BODIPYs showed significantly reduced LUMO, redshifted absorption/emission bands, high molar extinction coefficients and satisfactory reactive oxygen species generation efficiency up to 0.56, indicating potential use as heavy-atom-free photosensitizers.

4.
Dalton Trans ; 52(32): 11315-11324, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37530174

RESUMEN

The first examples of regioselective aryl ortho-C-H functionalization with diphenyldiazomethane for the construction of Caryl-Nhydrazinato bonds were accomplished via the activation of C-H bonds and the subsequent reaction of diphenyldiazomethane with the RE-Caryl bond. The reactions of rare-earth metal monoalkyl complexes LRE(CH2SiMe3)(THF)2 (L = 2,5-[(2-pyrrolyl)CPh2]2(N-Me-pyrrole)) supported by a neutral N-methylpyrrole anchored dipyrrolyl ligand with 2 equiv. of Ph2CN2 gave irreversibly unprecedented hydrazonato-functionalized imino rare-earth metal complexes LRE(Ph2CNNC6H4-(o-CNHPh) (RE = Y (2a), Lu (2a')) in good yields involving a rather complex process including the interaction of a diazo unit with a RE-Calkyl bond, a ß-H elimination, a N-N cleavage, 1,4-hydrogen transfer and the subsequent C-N coupling with another diphenyldiazomethane. More important is that regioselective aryl C-H bond functionalization with diphenyldiazomethane to construct the Caryl-Nhydrazinato bonds can be easily achieved by three-component reactions of rare-earth metal monoalkyl complexes, a wide range of substituted imines (including aldimines, ketimines or analogous 2-phenylpyridine) and diphenyldiazomethane, affording various hydrazonato-functionalized phenyl, thienyl imino or pyridyl rare-earth metal complexes 2b-2j at room temperature. A further study indicated that the substituents on the phenyl ring have a great effect on the reaction pathway and governed the Caryl-Nhydrazinato bond construction. Moreover, the experimental studies show that the formation of the Caryl-Nhydrazinato bonds is thermodynamically facile, which could be realized at room temperature easily.

5.
Inorg Chem ; 61(7): 3202-3211, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35138822

RESUMEN

Novel N,N,N-tridentate ß-diketiminato rare-earth-metal dialkyl complexes LRE(CH2SiMe3)2 [RE = Y (1a), Gd (1b), Yb (1c), Lu (1d); L = MeC(NDipp)CHC(Me)N(CH2)2NC4H8, where Dipp = 2,6-iPr2C6H3] have been conveniently synthesized by one step from reactions of the rare-earth-metal trialkyl complexes RE(CH2SiMe3)3(THF)2 (THF = tetrahydrofuran) with a pyrrolidine-functionalized ß-diketiminate HL, and their catalytic behaviors toward hydroalkoxylation and tandem hydroalkoxylation/cyclohydroamination of isocyanates have been described. These rare-earth-metal catalysts exhibited high efficiency in the hydroalkoxylation of isocyanates, providing a variety of N-alkyl and N-aryl carbamate derivatives under mild reaction conditions with a rather low catalyst loading (0.04 mol %). More significantly, they can promote a tandem hydroalkoxylation/cyclohydroamination reaction between terminal and internal propargylic alcohols with substituted arylisocyanates, leading to the efficient synthesis of methylene and (Z)-selective arylidene oxazolidinones in good-to-high yields via consecutive C-O and C-N bond formation. The stoichiometric reaction of 1a with p-tolylisocyanate generated an unusual dinuclear yttrium complex, {[η2-(4-MePhNCO)(CH2SiMe3)]Y[µ-η2:η1:η1-(4-MePhNCO)CC(Me)(NDipp)C(Me)N(CH2)2NC4H8]}2 (7a), with two different amidate units, which underwent an sp2 C-H bond activation of the ß-diketiminato backbone, followed by the insertion of isocyanate.

6.
Inorg Chem ; 59(19): 14152-14161, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32955245

RESUMEN

Newly synthesized rare-earth metal alkyl complexes bearing a tripyrrolyl ligand act as excellent precatalysts for the cross-dehydrogenative coupling between various terminal alkynes and O/N-based monohydrosilanes of HSi(OEt)3/HSi(NMe2)3, leading to the formation of a variety of alkoxysilylalkyne and aminosilylalkyne derivatives in good to high yields. The precatalysts LRE(CH2SiMe3)(thf)2 (RE = Y(1a), Er(1b), Yb(1c), L = 2,5-[(2-C4H3N)CPh2]2(C4H2NMe), thf = tetrahydrofuran) were easily prepared in high yields via the reactions of RE(CH2SiMe3)3(thf)2 with the proligand H2L in a single step. Mechanistic studies reveal that treatment of 1 with phenylacetylene could generate the active catalytic species: dinuclear rare-earth metal alkynides (L(thf)n[RE(µ-C≡CPh)]2L) (RE = Y(5a), n = 1; Yb(5c), n = 0), which could react with HSi(OEt)3 to produce the coupling product 4aa and the dinuclear rare-earth metal hydrides (L (thf)[RE(µ-H)]2L) (RE = Y(6a); Yb(6c)). By contrast, prior treatment of 1c with HSi(OEt)3 proceeds via cleavage of the Si-O bond to produce the dinuclear ytterbium alkoxide (LYb(µ-OEt))2 7c, which is inert in the dehydrogenative coupling reaction. The results of the mechanistic studies are consistent with the observation that the reaction is greatly influenced by the addition sequence of precatalyst/alkynes/silanes.

7.
Dalton Trans ; 47(11): 3947-3957, 2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29459931

RESUMEN

Herein, rare-earth metal dialkyl complexes supported by a neutral pyrrolyl-functionalized ß-diketiminato ligand with the formula LRE(CH2SiMe3)2(thf) (RE = Y (1a), Dy (1b), Er (1c), Yb (1d); L = MeC(NDipp)CHC(Me)NCH2CH2NC4H2-2,5-Me2, Dipp = 2,6-iPr2C6H3) were synthesized via the reactions of the ß-diketimine HL with the rare-earth metal trialkyl complexes RE(CH2SiMe3)3(thf)2 in high yields. The reactivities of 1 with pyridine derivatives, unsaturated substrates, and elemental sulfur were investigated, and some interesting chemical transformations were observed. Ligand exchange and activation of sp2 and sp3 C-H bonds occurred during the reactions with pyridine derivatives to afford different types of mononuclear rare-earth metal pyridyl complexes, namely, LEr(CH2SiMe3)2(η1-NC5H4) (2c), LRE(η3-CH2-2-NC5H2-4,6-Me2)2 (RE = Y (3a), Er (3c)), and LRE(CH2SiMe3)(η2-(C,N)-2-(2-C6H4NC5H4)) (RE = Er (4c), Yb = (4d)). Similarly, activation of the sp C-H bond occurred during the reaction of phenylacetylene with 1c to produce the dinuclear erbium alkynyl complex [LEr(CH2SiMe3)(µ-C[triple bond, length as m-dash]CPh)]2 (5c). The mixed amidinate-ß-diketiminato ytterbium complex LYb[(Dipp)NC(CH2SiMe3)N(Dipp)](CH2SiMe3) (6d) was obtained by the insertion of bis(2,6-diisopropylphenyl)carbodiimide into a Yb-alkyl bond, as well as via the direct alkane elimination of a CH2SiMe3 moiety with bis(2,6-diisopropylphenyl)formamidine to afford the erbium complex LEr(DippNCHNDipp)(CH2SiMe3) (7c). A rare sp2 C-H bond oxidation of the ß-diketiminato backbone with elemental sulfur insertion was detected to provide the unprecedented dinuclear rare-earth metal thiolate complexes (LRE)2(µ-SCH2SiMe3)2(µ-SCC(Me)(NDipp)C(Me)NCH2CH2NC4H2Me2-2,5) (RE = Y (8a), Er (8c)) in the reactions of S8 with 1a and 1c, respectively. The molecular structures of the complexes 1-8 were determined by single-crystal X-ray diffraction analyses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...