Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Int J Biol Macromol ; 245: 125474, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37336379

RESUMEN

The rational design and construction of controllable selenylation strategy are important for the study on the structure-activity relationship of Se polysaccharides. Herein, selenized Artemisia sphaerocephala polysaccharides (SePASs) were synthesized by using sulfonic acid functionalized ionic liquids (SFILs) as catalysts in order to study the regulation of the cation/anion constitute on the selenylation efficiency and Se polysaccharide structure. Impressively, SFILs could promote the efficient substitution of seleno-group on the polysaccharide backbone through the synergistic catalysis by cation/anions (Se content up to 5582.7 µg/g). Further, reaction mechanism and potential dissolution effect was supported by DFT calculation and polarized light microscopy. 13C NMR and FT-IR spectra analysis of SePASs exhibited that selenite existed in polysaccharides and the substitution position occured at C-6. SEC-MALLS, monosaccharide composition results revealed that strong acidity of SFILs lead to the driving forces toward low molecular mass polysaccharide fragments and synergistic effect of anion/cations in SFILs (-SO3H group of cations as proton donor, anions as nucleophile) showed regulation on average molecular mass. In addition, the strong attractions between the seleno-groups generated agglomeration of polysaccharide chain, which was proved by applying AFM analysis. Therefore, this work provided a new insight for manipulate Se content and MW of Se polysaccharides.


Asunto(s)
Líquidos Iónicos , Espectroscopía Infrarroja por Transformada de Fourier , Ácidos Sulfónicos , Polisacáridos/química , Aniones , Catálisis
2.
Sensors (Basel) ; 17(2)2017 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-28146128

RESUMEN

A new structure bulk tobacco curing barn was presented. To study the temperature and humidity field in the new structure tobacco curing barn, a 3D transient computational fluid dynamics (CFD) model was developed using porous medium, species transport, κ-ε turbulence and discrete phase models. The CFD results demonstrated that (1) the temperature and relative humidity predictions were validated by the experimental results, and comparison of simulation results with experimental data showed a fairly close agreement; (2) the temperature of the bottom and inlet area was higher than the top and outlet area, and water vapor concentrated on the top and outlet area in the barn; (3) tobacco loading density and thickness of tobacco leaves had an explicit effect on the temperature distributions in the barn.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...