Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 110: 117793, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38917622

RESUMEN

The pathogenic role of anti-phospholipase A2 receptor (PLA2R) antibodies in primary membranous nephropathy (MN) has been well-established. This study aimed to identify potential small-molecule inhibitors against the PLA2R-antibody interaction, offering potential therapeutic benefits. A comprehensive screening of over 4000 small-molecule compounds was conducted by ELISA to assess their inhibitory effects on the binding between the immobilized full-length extracellular PLA2R and its antibodies. The affinity of anti-PLA2R IgG from MN patients and the inhibitory efficacy of each compound were evaluated via surface plasmon resonance (SPR). Human podocyte injuries were analyzed using CCK-8 assay, wound healing assay, western blot analysis, and immunofluorescence, after exposure to MN plasma +/- blocking compound. Fifteen compounds were identified as potential inhibitors, demonstrating inhibition rates >20 % for the PLA2R-antibody interaction. Anti-PLA2R IgG exhibited a consistent affinity among patients (KD = 10-8 M). Macrocarpal B emerged as the most potent inhibitor, reducing the antigen-antibody interaction by nearly 30 % in a dose-dependent manner, comparable to the performance of the 31-mer peptide from the CysR domain. Macrocarpal B bound to the immobilized PLA2R with an affinity of 1.47 × 10-6 M, while showing no binding to anti-PLA2R IgG. Human podocytes exposed to MN plasma showed decreased podocin expression, impaired migration function, and reduced cell viability. Macrocarpal B inhibited the binding of anti-PLA2R IgG to podocytes and reduced the cellular injuries.

2.
Inorg Chem ; 61(16): 6017-6025, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35420419

RESUMEN

Magnetic bistability in single-molecule magnets (SMMs) is a potential basis for new types of nanoscale information storage material. The standard model for thermally activated relaxation of the magnetization in SMMs is based on the occurrence of a single Orbach process. Here, we show that incorporating a phosphorus atom into the framework of the dysprosium metallocene [(CpiPr5)Dy(CpPEt4)]+[B(C6F5)4]- (CpiPr5 is penta-isopropylcyclopentadienyl, CpPEt4 is tetraethylphospholyl) leads to the occurrence of two distinct high-temperature Orbach processes, with energy barriers of 1410(10) and 747(7) cm-1, respectively. These barriers provide experimental evidence for two different spin-phonon coupling regimes, which we explain with the aid of ab initio calculations. The strong and highly axial crystal field in this SMM also allows magnetic hysteresis to be observed up to 70 K, using a scan rate of 25 Oe s-1. In characterizing this SMM, we show that a conventional Debye model and consideration of rotational contributions to the spin-phonon interaction are insufficient to explain the observed phenomena.

3.
Chem Commun (Camb) ; 57(52): 6396-6399, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34085074

RESUMEN

The dimetallic fulvalene-bridged dysprosium complex [{Dy(Cp*)(µ-BH4)}2(Fvtttt)] (1, Cp* = C5Me5) is converted into the trimetallic borohydride-bridged species [{Dy(Cp*)(Fvtttt)}2Dy(µ-BH4)3] (2). In turn, 2 is reacted with a silylium electrophile to give [{Dy(Cp*)(µ-BH4)(Fvtttt)}2Dy][B(C6F5)4] ([3][B(C6F5)3]), the first trimetallic dysprosocenium cation. Compound [3][B(C6F5)3] can also be formed directly from 1 by adding two equivalents of the electrophile. A three-fold enhancement in the effective energy barrier from 2 to 3 is observed and interpreted with the aid of ab initio calculations.

4.
Chem Sci ; 11(22): 5745-5752, 2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32832050

RESUMEN

The dinucleating fulvalenyl ligand [1,1',3,3'-(C5 t Bu2H2)2]2- (Fvtttt) was used to synthesize the dimetallic dysprosocenium cation [{Dy(η5-Cp*)}2(µ-BH4)(η5:η5-Fvtttt)]+ (3) as the salt of [B(C6F5)4]- (Cp* = C5Me5). Compound [3][B(C6F5)4] was obtained using a method in which the double half-sandwich complex [{Dy(BH4)2(THF)}2(Fvtttt)] (1) was reacted with KCp* to give the double metallocene [{Dy(Cp*)(µ-BH4)}2(Fvtttt)] (2), followed by removal of a bridging borohydride ligand upon addition of [(Et3Si)2(µ-H)][B(C6F5)4]. The dimetallic fulvalenyl complexes 1-3 give rise to single-molecule magnet (SMM) behaviour in zero applied field, with the effective energy barriers of 154(15) cm-1, 252(4) cm-1 and 384(18) cm-1, respectively, revealing a significant improvement in performance across the series. The magnetic properties are interpreted with the aid of ab initio calculations, which show substantial increases in the axiality of the crystal field from 1 to 2 to 3 as a consequence of the increasingly dominant role of the Fvtttt and Cp* ligands, with the barrier height and hysteresis properties being attenuated by the equatorial borohydride ligands. The experimental and theoretical results described in this study furnish a blueprint for the design and synthesis of poly-cationic dysprosocenium SMMs with properties that may surpass those of benchmark systems.

6.
Angew Chem Int Ed Engl ; 59(6): 2299-2303, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31710765

RESUMEN

Reduction of the uranium(III) metallocene [(η5 -C5 i Pr5 )2 UI] (1) with potassium graphite produces the "second-generation" uranocene [(η5 -C5 i Pr5 )2 U] (2), which contains uranium in the formal divalent oxidation state. The geometry of 2 is that of a perfectly linear bis(cyclopentadienyl) sandwich complex, with the ground-state valence electron configuration of uranium(II) revealed by electronic spectroscopy and density functional theory to be 5f3 6d1 . Appreciable covalent contributions to the metal-ligand bonds were determined from a computational study of 2, including participation from the uranium 5f and 6d orbitals. Whereas three unpaired electrons in 2 occupy orbitals with essentially pure 5f character, the fourth electron resides in an orbital defined by strong 7s-6d z 2 mixing.

7.
Chem Rev ; 119(14): 8479-8505, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31059235

RESUMEN

Innovative synthetic coordination and, increasingly, organometallic chemistry are at the heart of advances in molecular magnetism. Smart ligand design is essential for implementing controlled modifications to the electronic structure and magnetic properties of transition metal and f-element compounds, and many important recent developments use nontraditional ligands based on low-coordinate main group elements to drive the field forward. This review charts progress in molecular magnetism from the perspective of ligands in which the donor atoms range from low-coordinate 2p elements-particularly carbon but also boron and nitrogen-to the heavier p-block elements such as phosphorus, arsenic, antimony, and even bismuth. Emphasis is placed on the role played by novel main group ligands in addressing magnetic anisotropy of transition metal and f-element compounds, which underpins the development of single-molecule magnets (SMMs), a family of magnetic materials that can retain magnetization in the absence of a magnetic field below a blocking temperature. Nontraditional p-block donor atoms, with their relatively diffuse valence orbitals and more diverse bonding characteristics, also introduce scope for tuning the spin-orbit coupling properties and metal-ligand covalency in molecular magnets, which has implications in areas such as magnetic exchange coupling and spin crossover phenomena. The chemistry encompasses transition metals, lanthanides, and actinides and describes recently discovered molecular magnets that can be regarded, currently, as defining the state of the art. This review identifies that main group chemistry at the interface molecular magnetism is an area with huge potential to deliver new types of molecular magnets with previously unseen properties and applications.

8.
Angew Chem Int Ed Engl ; 58(30): 10163-10167, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31034690

RESUMEN

Abstraction of iodide from [(η5 -C5 i Pr5 )2 UI] (1) produced the cationic uranium(III) metallocene [(η5 -C5 i Pr5 )2 U]+ (2) as a salt of [B(C6 F5 )4 ]- . The structure of 2 consists of unsymmetrically bonded cyclopentadienyl ligands and a bending angle of 167.82° at uranium. Analysis of the bonding in 2 showed that the uranium 5f orbitals are strongly split and mixed with the ligand orbitals, thus leading to non-negligible covalent contributions to the bonding. Investigation of the dynamic magnetic properties of 2 revealed that the 5f covalency leads to partially quenched anisotropy and fast magnetic relaxation in zero applied magnetic field. Application of a magnetic field leads to dominant relaxation by a Raman process.

9.
Science ; 362(6421): 1400-1403, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30337456

RESUMEN

Single-molecule magnets (SMMs) containing only one metal center may represent the lower size limit for molecule-based magnetic information storage materials. Their current drawback is that all SMMs require liquid-helium cooling to show magnetic memory effects. We now report a chemical strategy to access the dysprosium metallocene cation [(Cp i Pr5)Dy(Cp*)]+ (Cp i Pr5, penta-iso-propylcyclopentadienyl; Cp*, pentamethylcyclopentadienyl), which displays magnetic hysteresis above liquid-nitrogen temperatures. An effective energy barrier to reversal of the magnetization of U eff = 1541 wave number is also measured. The magnetic blocking temperature of T B = 80 kelvin for this cation overcomes an essential barrier toward the development of nanomagnet devices that function at practical temperatures.

10.
Dalton Trans ; 47(44): 15656-15660, 2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30357196

RESUMEN

Two isostructural lanthanide-based MOFs [Ln(HL)L]·H2O (1-Ln, Ln = Eu, Dy, H2L = 5-((pyridin-4-ylthio)methyl)isophthalic acid) were successfully obtained via the solvothermal reaction. 1-Eu exhibits high fluorescence quenching efficiency for C2O72- and Fe3+, which can be potentially used as a luminescent probe; 1-Dy behaves as a typical single-molecule magnet with an energy barrier (ΔUeff) of 54(2) K.

11.
Chemistry ; 24(63): 16779-16782, 2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30230639

RESUMEN

The potassium cyclobutadienyl [K2 {η4 -C4 (SiMe3 )4 }] (1) reacts with MCl3 (THF)3.5 (M=Y, Dy) to give the first rare-earth cyclobutadienyl complexes, that is, the complex anions [M{η4 -C4 (SiMe3 )4 }{η4 -C4 (SiMe3 )3 -κ-(CH2 SiMe2 }]2- , (2M ), as their dipotassium salts. The tuck-in alkyl ligand in 2M is thought to form through deprotonation of the "squarocene" complexes [M{η4 -C4 (SiMe3 )4 }2 ]- by 1. Complex 2Dy is a single-molecule magnet, but with prominent quantum tunneling. An anisotropy barrier of 323(22) cm-1 was determined for 2Dy in an applied field of 1 kOe, and magnetic hysteresis loops were observed up to 7 K.

12.
Acc Chem Res ; 51(8): 1880-1889, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30091896

RESUMEN

The discovery of materials capable of storing magnetic information at the level of single molecules and even single atoms has fueled renewed interest in the slow magnetic relaxation properties of single-molecule magnets (SMMs). The lanthanide elements, especially dysprosium, continue to play a pivotal role in the development of potential nanoscale applications of SMMs, including, for example, in molecular spintronics and quantum computing. Aside from their fundamentally fascinating physics, the realization of functional materials based on SMMs requires significant scientific and technical challenges to be overcome. In particular, extremely low temperatures are needed to observe slow magnetic relaxation, and while many SMMs possess a measurable energy barrier to reversal of the magnetization ( Ueff), very few such materials display the important properties of magnetic hysteresis with remanence and coercivity. Werner-type coordination chemistry has been the dominant method used in the synthesis of lanthanide SMMs, and most of our knowledge and understanding of these materials is built on the many important contributions based on this approach. In contrast, lanthanide organometallic chemistry and lanthanide magnetochemistry have effectively evolved along separate lines, hence our goal was to promote a new direction in single-molecule magnetism by uniting the nonclassical organometallic synthetic approach with the traditionally distinct field of molecular magnetism. Over the last several years, our work on SMMs has focused on obtaining a detailed understanding of why magnetic materials based on the dysprosium metallocene cation building block {Cp2Dy}+ display slow magnetic relaxation. Specifically, we aspired to control the SMM properties using novel coordination chemistry in a way that hinges on key considerations, such as the strength and the symmetry of the crystal field. In establishing that the two cyclopentadienyl ligands combine to provide a strongly axial crystal field, we were able to propose a robust magneto-structural correlation for understanding the properties of dysprosium metallocene SMMs. In doing so, a blueprint was established that allows Ueff and the magnetic blocking temperature ( TB) to be improved in a well-defined way. Although experimental discoveries with SMMs occur more rapidly than quantitative theory can (currently) process and explain, a clear message emanating from the literature is that a combination of the two approaches is most effective. In this Account, we summarize the main findings from our own work on dysprosium metallocene SMMs, and consider them in the light of related experimental studies and theoretical interpretations of related materials reported by other protagonists. In doing so, we aim to contribute to the nascent and healthy debate on the nature of spin dynamics in SMMs and allied molecular nanomagnets, which will be crucial for the further advancement of this vibrant research field.

13.
Chem Commun (Camb) ; 54(51): 7085-7088, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29878012

RESUMEN

The pentalene-ligated dysprosium complex [(η8-Pn†)Dy(Cp*)] (1Dy) (Pn† = [1,4-(iPr3Si)2C8H4]2-) and its magnetically dilute analogue are single-molecule magnets, with energy barriers of 245 cm-1. Whilst the [Cp*]- ligand in 1Dy provides a strong axial crystal field, the overall axiality of this system is attenuated by the unusual folded structure of the [Pn†]2- ligand.

14.
Sensors (Basel) ; 17(12)2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29206162

RESUMEN

A submicron pixel's light and dark performance were studied by experiment and simulation. An advanced node technology incorporated with a stacked CMOS image sensor (CIS) is promising in that it may enhance performance. In this work, we demonstrated a low dark current of 3.2 e-/s at 60 °C, an ultra-low read noise of 0.90 e-·rms, a high full well capacity (FWC) of 4100 e-, and blooming of 0.5% in 0.9 µm pixels with a pixel supply voltage of 2.8 V. In addition, the simulation study result of 0.8 µm pixels is discussed.

15.
Dalton Trans ; 46(39): 13582-13589, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-28952629

RESUMEN

The synthesis and structural characterization of two benzoquinone-bridged dinuclear rare-earth complexes [BQ(MCl2·THF3)2] (BQ = 2,5-bisoxide-1,4-benzoquinone; M = Y (1), Dy (2)) are described. Of these reported metal complexes, the dysprosium analogue 2 is the first discrete bridged dinuclear lanthanide complex in which both metal centres reside in pentagonal bipyramidal environments. Interestingly, both complexes undergo significant thermal expansion upon heating from 120 K to 293 K as illustrated by single-crystal X-ray and powder diffraction experiments. AC magnetic susceptibility measurements reveal that 2 does not show the slow relation of magnetization in zero dc field. The absent of single-molecule behaviour in 2 arises from the rotation of the principal magnetic axis as compared to the pseudo-C5 axis of the pentagonal bipyramidal environment as suggested by ab initio calculations. The cyclic voltammetry and chemical reduction experiments demonstrated that complexes 1 and 2 can be reduced to radical species containing [BQ3˙-]. This study establishes efficient synthetic strategy to make bridged redox-active multinuclear lanthanide complexes with a pentagonal bipyramidal coordination environment that are potential precursors for single-molecule magnets.

16.
Chem Commun (Camb) ; 53(72): 9990-9993, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28832031

RESUMEN

The stable metallocene-butyl complexes [(CpMe)2M(nBu)]2 (M = Y, Dy) were synthesized and their reactivity towards to ferrocene and bulky N-heterocyclic carbenes investigated. Selective mono-deprotonation of ferrocene and a benzylic methyl group of IMes were observed, whereas a control reaction of (CpMe)3M with IMes resulted in a normal-to-abnormal NHC rearrangement.

17.
Angew Chem Int Ed Engl ; 56(38): 11445-11449, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28586163

RESUMEN

Abstraction of a chloride ligand from the dysprosium metallocene [(Cpttt )2 DyCl] (1Dy Cpttt =1,2,4-tri(tert-butyl)cyclopentadienide) by the triethylsilylium cation produces the first base-free rare-earth metallocenium cation [(Cpttt )2 Dy]+ (2Dy ) as a salt of the non-coordinating [B(C6 F5 )4 ]- anion. Magnetic measurements reveal that [2Dy ][B(C6 F5 )4 ] is an SMM with a record anisotropy barrier up to 1277 cm-1 (1837 K) in zero field and a record magnetic blocking temperature of 60 K, including hysteresis with coercivity. The exceptional magnetic axiality of 2Dy is further highlighted by computational studies, which reveal this system to be the first lanthanide SMM in which all low-lying Kramers doublets correspond to a well-defined MJ value, with no significant mixing even in the higher doublets.

18.
Chem Commun (Camb) ; 53(21): 3130-3133, 2017 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-28245020

RESUMEN

The synthesis, structure and magnetic properties of the indigo-bridged dilanthanide complexes [{(η5-Cp*)2Ln}2(µ-ind)]n- with Ln = Gd or Dy and n = 0, 1 or 2 are described. The gadolinium complexes with n = 0 and 2 show typically weak exchange coupling, whereas the complex bridged by the radical [ind]3- ligand shows an unusually large coupling constant of J = -11 cm-1 (-2J formalism). The dysprosium complexes with n = 0 and 1 are single-molecule magnets in zero applied field, whereas the complex with n = 2 does not show slow magnetic relaxation.

19.
Dalton Trans ; 46(6): 1753-1756, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28112325

RESUMEN

Under ambient conditions, CO2 was captured from atmosphere and reduced for sequestering CO2 into two {Dy2} single-molecule magnets through an in situ organic ligand reaction of hydrazine. A reasonable reaction mechanism is proposed, which provides a promising route towards the capturing and transforming CO2 into single-molecule magnets.

20.
Dalton Trans ; 46(3): 638-642, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-27991621

RESUMEN

Herein we explored the transitions of two magnetic interaction states (antiferromagnetic or ferromagnetic) upon structural variations in two dinuclear Dy(iii) complexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...