Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36234608

RESUMEN

Amorphous InGaZnO (a-InGaZnO) is currently the most prominent oxide semiconductor complement to low-temperature polysilicon for thin-film transistor (TFT) applications in next-generation displays. However, balancing the transmission performance and low-temperature deposition is the primary obstacle in the application of a-InGaZnO TFTs in the field of ultra-high resolution optoelectronic display. Here, we report that a-InGaZnO:O TFT prepared at room temperature has high transport performance, manipulating oxygen vacancy (VO) defects through an oxygen-doped a-InGaZnO framework. The main electrical properties of a-InGaZnO:O TFTs included high field-effect mobility (µFE) of 28 cm2/V s, a threshold voltage (Vth) of 0.9 V, a subthreshold swing (SS) of 0.9 V/dec, and a current switching ratio (Ion/Ioff) of 107; significant improvements over a-InGaZnO TFTs without oxygen plasma. A possible reason for this is that appropriate oxygen plasma treatment and room temperature preparation technology jointly play a role in improving the electrical performance of a-InGaZnO TFTs, which could not only increase carrier concentration, but also reduce the channel-layer surface defects and interface trap density of a-InGaZnO TFTs. These provides a powerful way to synergistically boost the transport performance of oxide TFTs fabricated at room temperature.

2.
Nanomaterials (Basel) ; 12(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36144939

RESUMEN

The tin dioxide (SnO2) photocatalyst has a broad application prospect in the degradation of toxic organic pollutants. In this study, micron-sized spherical SnO2 and flower indium oxide (In2O3) structures were prepared by a simple hydrothermal method, and the In2O3/SnO2 composite samples were prepared by a "two-step method". Using Rhodamine B (RhB) as a model organic pollutant, the photocatalytic performance of the In2O3/SnO2 composites was studied. The photocurrent density of 1.0 wt.% In2O3/SnO2 was twice that of pure SnO2 or In2O3, and the degradation rate was as high as 97% after 240 min irradiation (87% after 120 min irradiation). The reaction rate was five times that of SnO2 and nine times that of In2O3. Combined with the trapping experiment, the transient photocurrent response, and the corresponding characterization of active substances, the possible degradation mechanism was that the addition of In2O3 inhibited the efficiency of electron-hole pair recombination, accelerated the electron transfer and enhanced the photocatalytic activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...