Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Microbiol ; 292: 110067, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564905

RESUMEN

African swine fever (ASF) is an infectious disease with high mortality caused by African swine fever virus (ASFV), which poses a great threat to the global swine industry. ASFV has evolved multiple strategies to evade host antiviral innate immunity by perturbing inflammatory responses and interferon production. However, the molecular mechanisms underlying manipulation of inflammatory responses by ASFV proteins are not fully understood. Here, we report that A137R protein of ASFV is a key suppressor of host inflammatory responses. Ectopic expression of ASFV A137R in HEK293T cells significantly inhibited the activation of IL-8 and NF-κB promoters triggered by Sendai virus (SeV), influenza A virus (IAV), or vesicular stomatitis virus (VSV). Accordingly, forced A137R expression caused a significant decrease in the production of several inflammatory cytokines such as IL-8, IL-6 and TNF-α in the cells infected with SeV or IAV. Similar results were obtained from experiments using A137R overexpressing PK15 and 3D4/21 cells infected with SeV or VSV. Furthermore, we observed that A137R impaired the activation of MAPK and NF-κB signaling pathways, as enhanced expression of A137R significantly decreased the phosphorylation of JNK, p38 and p65 respectively upon viral infection (SeV or IAV) and IL-1ß treatment. Mechanistically, we found that A137R interacted with MyD88, and dampened MyD88-mediated activation of MAPK and NF-κB signaling. Together, these findings uncover a critical role of A137R in restraining host inflammatory responses, and improve our understanding of complicated mechanisms whereby ASFV evades innate immunity.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Animales , Porcinos , Humanos , FN-kappa B/metabolismo , Virus de la Fiebre Porcina Africana/genética , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Interleucina-8/metabolismo , Células HEK293
2.
PLoS Pathog ; 20(1): e1011958, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38227600

RESUMEN

Autophagy-related protein 7 (ATG7) is an essential autophagy effector enzyme. Although it is well known that autophagy plays crucial roles in the infections with various viruses including influenza A virus (IAV), function and underlying mechanism of ATG7 in infection and pathogenesis of IAV remain poorly understood. Here, in vitro studies showed that ATG7 had profound effects on replication of IAV. Depletion of ATG7 markedly attenuated the replication of IAV, whereas overexpression of ATG7 facilitated the viral replication. ATG7 conditional knockout mice were further employed and exhibited significantly resistant to viral infections, as evidenced by a lower degree of tissue injury, slower body weight loss, and better survival, than the wild type animals challenged with either IAV (RNA virus) or pseudorabies virus (DNA virus). Interestingly, we found that ATG7 promoted the replication of IAV in autophagy-dependent and -independent manners, as inhibition of autophagy failed to completely block the upregulation of IAV replication by ATG7. To determine the autophagy-independent mechanism, transcriptome analysis was utilized and demonstrated that ATG7 restrained the production of interferons (IFNs). Loss of ATG7 obviously enhanced the expression of type I and III IFNs in ATG7-depleted cells and mice, whereas overexpression of ATG7 impaired the interferon response to IAV infection. Consistently, our experiments demonstrated that ATG7 significantly suppressed IRF3 activation during the IAV infection. Furthermore, we identified long noncoding RNA (lncRNA) GAPLINC as a critical regulator involved in the promotion of IAV replication by ATG7. Importantly, both inactivation of IRF3 and inhibition of IFN response caused by ATG7 were mediated through control over GAPLINC expression, suggesting that GAPLINC contributes to the suppression of antiviral immunity by ATG7. Together, these results uncover an autophagy-independent mechanism by which ATG7 suppresses host innate immunity and establish a critical role for ATG7/GAPLINC/IRF3 axis in regulating IAV infection and pathogenesis.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Virosis , Animales , Humanos , Ratones , Inmunidad Innata , Interferones , Replicación Viral
3.
Cell Rep ; 42(7): 112806, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37440406

RESUMEN

This study identifies interleukin-6 (IL-6)-independent phosphorylation of STAT3 Y705 at the early stage of infection with several viruses, including influenza A virus (IAV). Such activation of STAT3 is dependent on the retinoic acid-induced gene I/mitochondrial antiviral-signaling protein/spleen tyrosine kinase (RIG-I/MAVS/Syk) axis and critical for antiviral immunity. We generate STAT3Y705F/+ knockin mice that display a remarkably suppressed antiviral response to IAV infection, as evidenced by impaired expression of several antiviral genes, severe lung tissue injury, and poor survival compared with wild-type animals. Mechanistically, STAT3 Y705 phosphorylation restrains IAV pathogenesis by repressing excessive production of interferons (IFNs). Blocking phosphorylation significantly augments the expression of type I and III IFNs, potentiating the virulence of IAV in mice. Importantly, knockout of IFNAR1 or IFNLR1 in STAT3Y705F/+ mice protects the animals from lung injury and reduces viral load. The results indicate that activation of STAT3 by Y705 phosphorylation is vital for establishment of effective antiviral immunity by suppressing excessive IFN signaling induced by viral infection.


Asunto(s)
Virus de la Influenza A , Infecciones por Orthomyxoviridae , Factor de Transcripción STAT3 , Animales , Ratones , Antivirales , Inmunidad Innata , Interferones , Receptores de Interferón , Transducción de Señal , Infecciones por Orthomyxoviridae/inmunología , Factor de Transcripción STAT3/inmunología
4.
Mol Cell ; 83(7): 1043-1060.e10, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36854302

RESUMEN

Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.


Asunto(s)
Cromatina , Reparación del ADN , Animales , Cromatina/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Mamíferos/metabolismo , Proteínas de Unión a Telómeros/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteínas de Ciclo Celular/metabolismo
5.
Microbiol Spectr ; : e0363722, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847523

RESUMEN

Circular RNAs (circRNAs) are an important subclass of noncoding RNAs implicated in the regulation of multiple biological processes. However, the functional involvement of circRNAs in the pathogenesis of influenza A viruses (IAVs) remains largely unknown. Here, we employed RNA sequencing (RNA-Seq) to examine the differentially expressed circRNAs in mouse lung tissues challenged or not challenged with IAV to evaluate the impact of viral infection on circRNAs in vivo. We observed that 413 circRNAs exhibited significantly altered levels following IAV infection. Among these, circMerTK, the derivative of myeloid-epithelial-reproductive tyrosine kinase (MerTK) pre-mRNA, was highly induced by IAV. Interestingly, circMerTK expression was also increased upon infection with multiple DNA and RNA viruses in human and animal cell lines, and thus it was selected for further studies. Poly(I:C) and interferon ß (IFN-ß) stimulated circMerTK expression, while RIG-I knockout and IFNAR1 knockout cell lines failed to elevate circMerTK levels after IAV infection, demonstrating that circMerTK is regulated by IFN signaling. Furthermore, circMerTK overexpression or silencing accelerated or impeded IAV and Sendai virus replication, respectively. Silencing circMerTK enhanced the production of type I IFNs and interferon-stimulating genes (ISGs), whereas circMerTK overexpression suppressed their expression at both the mRNA and protein levels. Notably, altering circMerTK expression had no effect on the MerTK mRNA level in cells infected or not infected with IAV, and vice versa. In addition, human circMerTK and mouse homologs functioned similarly in antiviral responses. Together, these results identify circMerTK as an enhancer of IAV replication through suppression of antiviral immunity. IMPORTANCE CircRNAs are an important class of noncoding RNAs characterized by a covalently closed circular structure. CircRNAs have been proven to impact numerous cellular processes, where they conduct specialized biological activities. In addition, circRNAs are believed to play a crucial role in regulating immune responses. Nevertheless, the functions of circRNAs in the innate immunity against IAV infection remain obscure. In this study, we employed transcriptomic analysis to investigate the alterations in circRNAs expression following IAV infection in vivo. It was found that expression of 413 circRNAs was significantly altered, of which 171 were upregulated, and 242 were downregulated following the IAV infection. Interestingly, circMerTK was identified as a positive regulator of IAV replication in both human and mouse hosts. CircMerTK was shown to influence IFN-ß production and its downstream signaling, enhancing IAV replication. This finding provides new insights into the critical roles of circRNAs in regulating antiviral immunity.

6.
mBio ; 13(6): e0251022, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36321836

RESUMEN

MIR155HG encodes a precursor RNA of microRNA-155 (miRNA-155). We previously identified this RNA also as a long noncoding RNA (lncRNA) that we call lncRNA-155. To define the functions of miRNA-155 and lncRNA-155, we generated miRNA-155 knockout (KO) mice lacking only 19 bp of the miRNA-155 core sequence without affecting the expression of lncRNA-155. Surprisingly, compared with the miRNA-155KO mice, previously generated lncRNA-155KO mice were more susceptible to both influenza virus (RNA virus) and pseudorabies virus (DNA virus) infection, as characterized by lower survival rate, higher body weight loss, and higher viral load. We found that miRNA-155-5p enhanced antiviral responses by positively regulating activation of signal transducer and activator of transcription 1 (STAT1), but the STAT1 activity differed greatly in the animals (lncRNA-155KO < miRNA-155KO < wild type). In line with this, expression levels of several critical interferon-stimulated genes (ISGs) were also significantly different (lncRNA-155KO < miRNA-155KO < wild type). We found that lncRNA-155 augmented interferon beta (IFN-ß) production during the viral infection, but miRNA-155 had no significant effect on the virus-induced IFN-ß expression. Furthermore, we observed that lncRNA-155 loss in mice resulted in dramatic inhibition of virus-induced activation of interferon regulatory factor 3 compared to both miRNA-155KO and wild-type (WT) animals. Moreover, lncRNA-155 still significantly suppressed the viral infection even though the miRNA-155 derived from lncRNA-155 was deleted or blocked. These results reveal that lncRNA-155 and miRNA-155 regulate antiviral responses through distinct mechanisms, indicating a bivalent role for MIR155HG in innate immunity. IMPORTANCE Here, we found that lncRNA-155KO mice lacking most of the lncRNA-155 sequences along with pre-miRNA-155, were more susceptible to influenza virus or pseudorabies virus infection than miRNA-155KO mice lacking only 19 bp of the miRNA-155 core sequence without affecting the expression of lncRNA-155, as evidenced by faster body weight loss, poorer survival, and higher viral load, suggesting an additional role of lncRNA-155 in regulating viral pathogenesis besides via processing miRNA-155. Congruously, miRNA-155-deleted lncRNA-155 significantly attenuated the viral infection. Mechanistically, we demonstrated miRNA-155-5p potentiated antiviral responses by promoting STAT1 activation but could not directly regulate the IFN-ß expression. In contrast, lncRNA-155 enhanced virus-induced IFN-ß production by regulating the activation of interferon regulatory factor 3. This finding reveals a bivalent role of MIR155HG in regulating antiviral responses through encoding lncRNA-155 and miRNA-155-5p and provides new insights into complicated mechanisms underlying interaction between virus and host innate immunity.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Virosis , Virus , Animales , Ratones , Antivirales , ARN Largo no Codificante/genética , Factor 3 Regulador del Interferón/metabolismo , Replicación Viral/genética , Inmunidad Innata/genética , Interferón beta/genética , MicroARNs/genética , Virus/genética , Pérdida de Peso
7.
Sheng Wu Gong Cheng Xue Bao ; 38(9): 3489-3500, 2022 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-36151816

RESUMEN

Eukaryotic translation initiation factor 4B (eIF4B) plays an important role in mRNA translation initiation, cell survival and proliferation in vitro, but the in vivo function is poorly understood. In this study, via various experimental techniques such as hematoxylin-eosin (HE) staining, flow cytometry, Western blotting, and immunohistochemistry, we investigated the role of eIF4B in mouse embryo development using an eIF4B knockout (KO) mouse model and explored the mechanism. We found that the livers, but not lungs, brain, stomach, or pancreas, derived from eIF4B KO mouse embryos displayed severe pathological changes characterized by enhanced apoptosis and necrosis. Accordingly, high expression of cleaved-caspase 3, and excessive activation of mTOR signaling as evidenced by increased expression and phosphorylation of p70S6K and enhanced phosphorylation of 4EBP1, were observed in mouse embryonic fibroblasts and fetal livers from eIF4B KO mice. These results uncover a critical role of eIF4B in mouse embryo development and provide important insights into the biological functions of eIF4B in vivo.


Asunto(s)
Fibroblastos , Proteínas Quinasas S6 Ribosómicas 70-kDa , Animales , Apoptosis/genética , Caspasa 3 , Eosina Amarillenta-(YS) , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Hematoxilina , Hígado/metabolismo , Ratones , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Serina-Treonina Quinasas TOR
8.
Front Immunol ; 13: 960544, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36148221

RESUMEN

STAT2 is an important transcription factor activated by interferons (IFNs) upon viral infection and plays a key role in antiviral responses. Interestingly, here we found that phosphorylation of STAT2 could be induced by several viruses at early infection stage, including influenza A virus (IAV), and such initial activation of STAT2 was independent of type I IFNs and JAK kinases. Furthermore, it was observed that the early activation of STAT2 during viral infection was mainly regulated by the RIG-I/MAVS-dependent pathway. Disruption of STAT2 phosphorylation at Tyr690 restrained antiviral response, as silencing STAT2 or blocking STAT2 Y690 phosphorylation suppressed the expression of several interferon-stimulated genes (ISGs), thereby facilitating viral replication. In vitro experiments using overexpression system or kinase inhibitors showed that several kinases including MAPK12 and Syk were involved in regulation of the early phosphorylation of STAT2 triggered by IAV infection. Moreover, when MAPK12 kinase was inhibited, expression of several ISGs was clearly decreased in cells infected with IAV at the early infection stage. Accordingly, inhibition of MAPK12 accelerated the replication of influenza virus in host. These results provide a better understanding of how initial activation of STAT2 and the early antiviral responses are induced by the viral infection.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Interferón Tipo I , Antivirales/farmacología , Humanos , Interferón Tipo I/metabolismo , Quinasas Janus/metabolismo , Factor de Transcripción STAT2/metabolismo
9.
Nat Cancer ; 3(9): 1088-1104, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36138131

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. Characterization of genetic alterations will improve our understanding and therapies for this disease. Here, we report that PDAC with elevated expression of METTL16, one of the 'writers' of RNA N6-methyladenosine modification, may benefit from poly-(ADP-ribose)-polymerase inhibitor (PARPi) treatment. Mechanistically, METTL16 interacts with MRE11 through RNA and this interaction inhibits MRE11's exonuclease activity in a methyltransferase-independent manner, thereby repressing DNA end resection. Upon DNA damage, ATM phosphorylates METTL16 resulting in a conformational change and autoinhibition of its RNA binding. This dissociates the METTL16-RNA-MRE11 complex and releases inhibition of MRE11. Concordantly, PDAC cells with high METTL16 expression show increased sensitivity to PARPi, especially when combined with gemcitabine. Thus, our findings reveal a role for METTL16 in homologous recombination repair and suggest that a combination of PARPi with gemcitabine could be an effective treatment strategy for PDAC with elevated METTL16 expression.


Asunto(s)
Carcinoma Ductal Pancreático , Proteína Homóloga de MRE11 , Metiltransferasas , Neoplasias Pancreáticas , Adenosina Difosfato Ribosa , Carcinoma Ductal Pancreático/tratamiento farmacológico , ADN , Exonucleasas/genética , Humanos , Proteína Homóloga de MRE11/genética , Metiltransferasas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética , ARN , Mutaciones Letales Sintéticas , Neoplasias Pancreáticas
10.
Chem Commun (Camb) ; 58(63): 8866-8869, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35856683

RESUMEN

The effects of a series of MOFs on the adsorption and separation of lithium isotopes were investigated in this paper. Seven kinds of MOF were prepared, and the characterization studies of MIL-100(Fe) before and after adsorption by X-ray photoelectron spectroscopy (XPS) demonstrated the potential chemical interaction between Fe and Li. The influence of metal ions, counter-ions and solvents on the adsorption capacity and separation factor was investigated. The maximum separation factor can reach 1.048 ± 0.001. MIL-100(Fe) also has good regeneration performance.

11.
Oncogene ; 41(33): 4018-4027, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35821281

RESUMEN

Heme oxygenase-1 (HO-1) is an inducible heme degradation enzyme that plays a cytoprotective role against various oxidative and inflammatory stresses. However, it has also been shown to exert an important role in cancer progression through a variety of mechanisms. Although transcription factors such as Nrf2 are involved in HO-1 regulation, the posttranslational modifications of HO-1 after oxidative insults and the underlying mechanisms remain unexplored. Here, we screened and identified that the deubiquitinase USP7 plays a key role in the control of redox homeostasis through promoting HO-1 deubiquitination and stabilization in hepatocytes. We used low-dose arsenic as a stress model which does not affect the transcriptional level of HO-1, and found that the interaction between USP7 and HO-1 is increased after arsenic exposure, leading to enhanced HO-1 expression and attenuated oxidative damages. Furthermore, HO-1 protein is ubiquitinated at K243 and subjected to degradation under resting conditions; whereas when after arsenic exposure, USP7 itself can be ubiquitinated at K476, thereafter promoting the binding between USP7 and HO-1, finally leading to enhanced HO-1 deubiquitination and protein accumulation. Moreover, depletion of USP7 and HO-1 inhibit liver tumor growth in vivo, and USP7 positively correlates with HO-1 protein level in clinical human hepatocellular carcinoma (HCC) specimens. In summary, our findings reveal a critical role of USP7 as a HO-1 deubiquitinating enzyme in the regulation of oxidative stresses, and suggest that USP7 inhibitor might be a potential therapeutic agent for treating HO-1 overexpressed liver cancers.


Asunto(s)
Arsénico , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Neoplasias Hepáticas/genética , Estrés Oxidativo , Peptidasa Específica de Ubiquitina 7/genética
12.
Viruses ; 14(3)2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35336982

RESUMEN

African swine fever is one of the most devastating swine diseases caused by African swine fever virus (ASFV). Although ASFV encodes more than 160 viral proteins, the implication of a majority of ASFV proteins in regulating host immunity is yet to be explored, and the mechanisms of immune evasion by ASFV proteins are largely unknown. Here, we report that the I226R protein of ASFV significantly suppressed innate immune responses. The ectopic expression of ASFV I226R in 293T cells significantly inhibited the activation of interferon-stimulated response element promoters triggered by Sendai virus (SeV), poly(I:C), or cyclic GMP-AMP synthase (cGAS)/STING. The I226R protein caused a significant decrease in the expression of interferons and interferon-stimulating genes in cells infected with SeV. Similar results were obtained from experiments using I226R-overexpressed PK15 and 3D4/21 cells stimulated with vesicular stomatitis virus. We observed that I226R inhibited the activation of both nuclear factor-kappa B (NF-κB) and interferon regulatory factor 3 (IRF3). Furthermore, it was shown that overexpression of I226R suppressed IRF3 activation and caused the degradation of NF-κB essential modulator (NEMO) protein. The I226R-induced NEMO degradation could be prevented by treatment with MG132, a proteasome inhibitor. Together, these results reveal that the ASFV I226R protein impairs antiviral responses, likely through multiple mechanisms including the suppression of NF-κB and IRF3 activation, to counteract innate immune responses during the viral infection.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Virus de la Fiebre Porcina Africana/fisiología , Animales , Antivirales/metabolismo , Inmunidad Innata , Interferones/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Porcinos
13.
J Virol ; 96(7): e0020022, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35293768

RESUMEN

Spleen tyrosine kinase (Syk) has recently come forth as a critical regulator of innate immune response. Previous studies identify Syk as a key kinase for STAT1 activation at the early stage of influenza A virus (IAV) infection that is involved in initial antiviral immunity. However, the involvement of Syk in host antiviral immunity during the late phase of IAV infection and its effect on pathogenesis of the virus remain unknown. Here, we found through time course studies that Syk restrained antiviral immune response at the late stage of IAV infection, thereby promoting viral replication. Depletion of Syk suppressed IAV replication in vitro, whereas ectopic expression of Syk facilitated viral replication. Moreover, Syk-deficient mice were employed, and we observed that knockout of Syk rendered mice more resistant to IAV infection, as evidenced by a lower degree of lung injury, slower body weight loss, and an increased survival rate of Syk knockout mice challenged with IAV. Furthermore, we revealed that Syk repressed the interferon response at the late stage of viral infection. Loss of Syk potentiated the expression of type I and III interferons in both Syk-depleted cells and mice. Mechanistically, Syk interacted with TBK1 and modulated its phosphorylation status, thereby impeding TBK1 activation and restraining innate immune signaling that governs interferon response. Together, these findings unveil a role of Syk in temporally regulating host antiviral immunity and advance our understanding of complicated mechanisms underlying regulation of innate immunity against viral invasion. IMPORTANCE Innate immunity must be tightly controlled to eliminate invading pathogens while avoiding autoimmune or inflammatory diseases. Syk is essential for STAT1 activation at the early stage of IAV infection, which is critical for initial antiviral responses. Surprisingly, here a time course study showed that Syk suppressed innate immunity during late phases of IAV infection and thereby promoted IAV replication. Syk deficiency enhanced the expression of type I and III interferons, inhibited IAV replication, and rendered mice more resistant to IAV infection. Syk impaired innate immune signaling through impeding TBK1 activation. These data reveal that Syk participates in the initiation of antiviral defense against IAV infection and simultaneously contributes to the restriction of innate immunity at the late stage of viral infection, suggesting that Syk serves a dual function in regulating antiviral responses. This finding provides new insights into complicated mechanisms underlying interaction between virus and host immune system.


Asunto(s)
Inmunidad Innata , Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Antivirales/metabolismo , Interacciones Microbiota-Huesped/inmunología , Humanos , Interferones/metabolismo , Ratones , Infecciones por Orthomyxoviridae/enzimología , Infecciones por Orthomyxoviridae/inmunología , Quinasa Syk/genética , Quinasa Syk/inmunología , Replicación Viral
14.
Mol Cancer ; 21(1): 5, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34980123

RESUMEN

BACKGROUND: Dysregulation of long noncoding RNAs (lncRNAs) has been linked to various human cancers. Bcr-Abl oncogene that results from a reciprocal translocation between human chromosome 9 and 22, is associated with several hematological malignancies. However, the role of lncRNAs in Bcr-Abl-induced leukemia remains largely unexplored. METHODS: LncRNA cDNA microarray was employed to identify key lncRNAs involved in Bcr-Abl-mediated cellular transformation. Abl-transformed cell survival and xenografted tumor growth in mice were evaluated to dissect the role of imatinib-upregulated lncRNA 1 (IUR1) in Abl-induced tumorigenesis. Primary bone marrow transformation and in vivo leukemia transplant using lncRNA-IUR1 knockout (KO) mice were further conducted to address the functional relevance of lncRNA-IUR1 in Abl-mediated leukemia. Transcriptome RNA-seq and Western blotting were performed to determine the mechanisms by which lncRNA-IUR1 regulates Bcr-Abl-induced tumorigenesis. RESULTS: We identified lncRNA-IUR1 as a critical negative regulator of Bcr-Abl-induced tumorigenesis. LncRNA-IUR1 expressed in a very low level in Bcr-Abl-positive cells from chronic myeloid leukemia patients. Interestingly, it was significantly induced in Abl-positive leukemic cells treated by imatinib. Depletion of lncRNA-IUR1 promoted survival of Abl-transformed human leukemic cells in experiments in vitro and xenografted tumor growth in mice, whereas ectopic expression of lncRNA-IUR1 sensitized the cells to apoptosis and suppressed tumor growth. In concert, silencing murine lncRNA-IUR1 in Abl-transformed cells accelerated cell survival and the development of leukemia in mice. Furthermore, lncRNA-IUR1 deficient mice were generated, and we observed that knockout of murine lncRNA-IUR1 facilitated Bcr-Abl-mediated primary bone marrow transformation. Moreover, animal leukemia model revealed that lncRNA-IUR1 deficiency promoted Abl-transformed cell survival and development of leukemia in mice. Mechanistically, we demonstrated that lncRNA-IUR1 suppressed Bcr-Abl-induced tumorigenesis through negatively regulating STAT5-mediated GATA3 expression. CONCLUSIONS: These findings unveil an inhibitory role of lncRNA-IUR1 in Abl-mediated cellular transformation, and provide new insights into molecular mechanisms underlying Abl-induced leukemogenesis.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes abl , Mesilato de Imatinib/farmacología , Inhibidores de Proteínas Quinasas/farmacología , ARN Largo no Codificante , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Proteínas de Fusión bcr-abl/genética , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Perfilación de la Expresión Génica , Humanos , Mesilato de Imatinib/uso terapéutico , Ratones Noqueados , Inhibidores de Proteínas Quinasas/uso terapéutico , Factor de Transcripción STAT5/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Nat Commun ; 12(1): 6653, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789768

RESUMEN

BRCA1-BARD1 heterodimers act in multiple steps during homologous recombination (HR) to ensure the prompt repair of DNA double strand breaks. Dysfunction of the BRCA1 pathway enhances the therapeutic efficiency of poly-(ADP-ribose) polymerase inhibitors (PARPi) in cancers, but the molecular mechanisms underlying this sensitization to PARPi are not fully understood. Here, we show that cancer cell sensitivity to PARPi is promoted by the ring between ring fingers (RBR) protein RNF19A. We demonstrate that RNF19A suppresses HR by ubiquitinating BARD1, which leads to dissociation of BRCA1-BARD1 complex and exposure of a nuclear export sequence in BARD1 that is otherwise masked by BRCA1, resulting in the export of BARD1 to the cytoplasm. We provide evidence that high RNF19A expression in breast cancer compromises HR and increases sensitivity to PARPi. We propose that RNF19A modulates the cancer cell response to PARPi by negatively regulating the BRCA1-BARD1 complex and inhibiting HR-mediated DNA repair.


Asunto(s)
Proteína BRCA1/metabolismo , Recombinación Homóloga , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteína BRCA1/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinogénesis , Daño del ADN , Femenino , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Unión Proteica , Multimerización de Proteína , Dominios RING Finger , Proteínas Supresoras de Tumor/química , Ubiquitina-Proteína Ligasas/química
16.
Front Immunol ; 12: 723885, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566982

RESUMEN

Eukaryotic translation initiation factor 4B (eIF4B) plays an important role in mRNA translation initiation, cell survival and proliferation in vitro. However, its function in vivo is poorly understood. Here, we identified that eIF4B knockout (KO) in mice led to embryonic lethality, and the embryos displayed severe liver damage. Conditional KO (CKO) of eIF4B in adulthood profoundly increased the mortality of mice, characterized by severe pathological changes in several organs and reduced number of peripheral blood lymphocytes. Strikingly, eIF4B CKO mice were highly susceptible to viral infection with severe pulmonary inflammation. Selective deletion of eIF4B in lung epithelium also markedly promoted replication of influenza A virus (IAV) in the lung of infected animals. Furthermore, we observed that eIF4B deficiency significantly enhanced the expression of several important inflammation-associated factors and chemokines, including serum amyloid A1 (Saa1), Marco, Cxcr1, Ccl6, Ccl8, Ccl20, Cxcl2, Cxcl17 that are implicated in recruitment and activation of neutrophiles and macrophages. Moreover, the eIF4B-deficient mice exhibited impaired natural killer (NK) cell-mediated cytotoxicity during the IAV infection. Collectively, the results reveal that eIF4B is essential for mouse survival and host antiviral responses, and establish previously uncharacterized roles for eIF4B in regulating normal animal development and antiviral immunity in vivo.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/mortalidad , Biosíntesis de Proteínas , Replicación Viral , Animales , Antivirales , Femenino , Interacciones Huésped-Patógeno , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología
17.
Nat Cell Biol ; 23(8): 894-904, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34354233

RESUMEN

The shieldin complex functions as the downstream effector of 53BP1-RIF1 to promote DNA double-strand break end-joining by restricting end resection. The SHLD2 subunit binds to single-stranded DNA ends and blocks end resection through OB-fold domains. Besides blocking end resection, it is unclear how the shieldin complex processes SHLD2-bound single-stranded DNA and promotes non-homologous end-joining. Here, we identify a downstream effector of the shieldin complex, ASTE1, as a structure-specific DNA endonuclease that specifically cleaves single-stranded DNA and 3' overhang DNA. ASTE1 localizes to DNA damage sites in a shieldin-dependent manner. Loss of ASTE1 impairs non-homologous end-joining, leads to hyper-resection and causes defective immunoglobulin class switch recombination. ASTE1 deficiency also causes resistance to poly(ADP-ribose) polymerase inhibitors in BRCA1-deficient cells owing to restoration of homologous recombination. These findings suggest that ASTE1-mediated 3' single-stranded DNA end cleavage contributes to the control of DSB repair choice by 53BP1, RIF1 and shieldin.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Desoxirribonucleasa I/fisiología , Proteínas/fisiología , Animales , Proteínas de Ciclo Celular/fisiología , ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Femenino , Inestabilidad Genómica , Células HEK293 , Humanos , Cambio de Clase de Inmunoglobulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión
18.
Cancer Discov ; 11(11): 2726-2737, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34099454

RESUMEN

Immune checkpoint blockade (ICB) has revolutionized cancer therapy. However, the response of patients to ICB is difficult to predict. Here, we examined 81 patients with lung cancer under ICB treatment and found that patients with MET amplification were resistant to ICB and had a poor progression-free survival. Tumors with MET amplifications had significantly decreased STING levels and antitumor T-cell infiltration. Furthermore, we performed deep single-cell RNA sequencing on more than 20,000 single immune cells and identified an immunosuppressive signature with increased subsets of XIST- and CD96-positive exhausted natural killer (NK) cells and decreased CD8+ T-cell and NK-cell populations in patients with MET amplification. Mechanistically, we found that oncogenic MET signaling induces phosphorylation of UPF1 and downregulates tumor cell STING expression via modulation of the 3'-UTR length of STING by UPF1. Decreased efficiency of ICB by MET amplification can be overcome by inhibiting MET. SIGNIFICANCE: We suggest that the combination of MET inhibitor together with ICB will overcome ICB resistance induced by MET amplification. Our report reveals much-needed information that will benefit the treatment of patients with primary MET amplification or EGFR-tyrosine kinase inhibitor resistant-related MET amplification.This article is highlighted in the In This Issue feature, p. 2659.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas c-met , Linfocitos T CD8-positivos , Amplificación de Genes , Humanos , Inmunoterapia , Células Asesinas Naturales , Neoplasias Pulmonares/terapia , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oncogenes , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo
19.
Nat Commun ; 12(1): 2187, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846346

RESUMEN

The RNA-sensing pathway contributes to type I interferon (IFN) production induced by DNA damaging agents. However, the potential involvement of RNA sensors in DNA repair is unknown. Here, we found that retinoic acid-inducible gene I (RIG-I), a key cytosolic RNA sensor that recognizes RNA virus and initiates the MAVS-IRF3-type I IFN signaling cascade, is recruited to double-stranded breaks (DSBs) and suppresses non-homologous end joining (NHEJ). Mechanistically, RIG-I interacts with XRCC4, and the RIG-I/XRCC4 interaction impedes the formation of XRCC4/LIG4/XLF complex at DSBs. High expression of RIG-I compromises DNA repair and sensitizes cancer cells to irradiation treatment. In contrast, depletion of RIG-I renders cells resistant to irradiation in vitro and in vivo. In addition, this mechanism suggests a protective role of RIG-I in hindering retrovirus integration into the host genome by suppressing the NHEJ pathway. Reciprocally, XRCC4, while suppressed for its DNA repair function, has a critical role in RIG-I immune signaling through RIG-I interaction. XRCC4 promotes RIG-I signaling by enhancing oligomerization and ubiquitination of RIG-I, thereby suppressing RNA virus replication in host cells. In vivo, silencing XRCC4 in mouse lung promotes influenza virus replication in mice and these mice display faster body weight loss, poorer survival, and a greater degree of lung injury caused by influenza virus infection. This reciprocal regulation of RIG-I and XRCC4 reveals a new function of RIG-I in suppressing DNA repair and virus integration into the host genome, and meanwhile endues XRCC4 with a crucial role in potentiating innate immune response, thereby helping host to prevail in the battle against virus.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal/inmunología , Células A549 , Animales , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN por Unión de Extremidades/efectos de la radiación , Reparación del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Genoma Humano , Células HEK293 , Humanos , Ratones , Radiación Ionizante , Retroviridae/metabolismo , Replicación Viral/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...