Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2400593, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529744

RESUMEN

As a kind of flexible electronic device, flexible pressure sensor has attracted wide attention in medical monitoring and human-machine interaction. With the continuous deepening of research, high-sensitivity sensor is developing from single function to multi-function. However, Current multifunctional sensors lack the ability to integrate joule heating, detect sliding friction, and self-healing. Herein, a MXene/polyurethane (PU) flexible pressure sensor with a self-healing property for joule heating and friction sliding is fabricated. The MXene/PU sensitive layer with special spinosum structure is prepared by a simple spraying method. After face-to-face assembly of the sensitive layers, the MXene/PU flexible pressure sensor is obtained and showed excellent sensitivity (150.65 kPa-1), fast response/recovery speed (75.5/63.9 ms), and good stability (10 000 cycles). Based on the self-healing property of PU, the sensor also has the ability to heal after mechanical damage. In addition, the sensor realizes the joule heating function under low voltage, and has the real-time monitoring ability of sliding objects. Combined with low cost and simple manufacturing method, the multi-functional MXene/PU flexible sensor shows a wide range of application potential in human activity monitoring, thermal management, and slip recognition.

2.
Adv Sci (Weinh) ; 11(14): e2308016, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308192

RESUMEN

This work investigates the impact of pressure on the structural, optical properties, and electronic structure of CsPbBr3 quantum dots (QDs) using steady-state photoluminescence, steady-state absorption, and femtosecond transient absorption spectroscopy, reaching a maximum pressure of 3.38 GPa. The experimental results indicate that CsPbBr3 QDs undergo electronic state (ES) transitions from ES-I to ES-II and ES-II to ES-III at 0.38 and 1.08 GPa, respectively. Intriguingly, a mixed state of ES-II and ES-III is observed within the pressure range of 1.08-1.68 GPa. The pressure-induced fluorescence quenching in ES-II is attributed to enhanced defect trapping and reduced radiative recombination. Above 1.68 GPa, fluorescence vanishes entirely, attributed to the complete phase transformation from ES-II to ES-III in which radiative recombination becomes non-existent. Notably, owing to stronger quantum confinement effects, CsPbBr3 QDs exhibit an impressive bandgap tuning range of 0.497 eV from 0 to 2.08 GPa, outperforming nanocrystals by 1.4 times and bulk counterparts by 11.3 times. Furthermore, this work analyzes various carrier dynamics processes in the pressure-induced bandgap evolution and electron state transitions, and systematically studies the microphysical mechanisms of optical properties in CsPbBr3 QDs under pressure, offering insights for optimizing optical properties and designing novel materials.

3.
Adv Sci (Weinh) ; 11(10): e2309052, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38168897

RESUMEN

Thermoelectric devices (TEDs) show great potential for waste heat energy recycling and sensing. However, existing TEDs cannot be self-adapted to the complex quadratic surface, leading to significant heat loss and restricting their working scenario. Here, surface-conformable origami-TEDs (o-TEGs) are developed through programmable crease-designed origami substrates and the screen-printing TE legs. Compared with "π" structured TEDs, the origami design (with heat conductive materials) changed the heat-transferring direction of the laminated TE legs, resulting in an enhancement in enlarging ΔT/THot and Vout by 5.02 and 3.51 times. Four o-TEDs with different creases designs are fabricated to verify the heat recycling ability on plane and central quadratic surfaces. Demonstrating a high Vout density (up to 0.98 -2 at ΔT of 50 K) and good surface conformability, o-TEDs are further used in thermal touch panels attached to multiple surfaces, allowing information to be wirelessly transferred on a remote display via finger-writing.

4.
Small ; 20(6): e2305062, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37803476

RESUMEN

PtIr-based nanostructures are fascinating materials for application in bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysis. However, the fabrication of PtIr nanocatalysts with clear geometric features and structural configurations, which are crucial for enhancing the bifunctionality, remains challenging. Herein, PtCo@PtIr nanoparticles are precisely designed and fabricated with a quasi-octahedral PtCo nanocrystal as a highly atomically ordered core and an ultrathin PtIr atomic layer as a compressively strained shell. Owing to their geometric and core-shell features, the PtCo@PtIr nanoparticles deliver approximately six and eight times higher mass and specific activities, respectively, as an ORR catalyst than a commercial Pt/C catalyst. The half-wave potential of PtCo@PtIr exhibits a negligible decrease by 9 mV after 10 000 cycles, indicating extraordinary ORR durability because of the ordered arrangement of Pt and Co atoms. When evaluated using the ORR-OER dual reaction upon the introduction of Ir, PtCo@PtIr exhibits a small ORR-OER overpotential gap of 679 mV, demonstrating its great potential as a bifunctional electrocatalyst for fabricating fuel cells. The findings pave the way for designing precise intermetallic core-shell nanocrystals as highly functional catalysts.

5.
J Phys Chem Lett ; 14(51): 11735-11741, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38113518

RESUMEN

Macroscopically, the traditional Young-Lippmann equation is used to describe the water contact angle under a weak electric field. Here we report a new wetting mechanism of deionized water under a strong electric field that defies the conventional Young-Lippmann equation. The contact angle of the deionized water droplet on a model hexagonal lattice with a different initial wettability is extensively modulated by the vertical electric field. The cosine of water contact angle on a hydrophilic substrate displays an anomalous linear relationship with the field, in contrast to the hydrophobic case, which shows an inverse parabolic relationship. Such anomalous wetting is verified by experimental measurements of water droplets on a pyroelectric substrate. Moreover, we identify that this anomaly arises from the linear modulation of the solid-liquid interfacial tension of hydrophilic substrates by the electric field. Our findings provide atomistic insight into the fundamental laws and new phenomena of water-surface interactions under extreme electric fields.

6.
Nano Lett ; 23(9): 4023-4031, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37104145

RESUMEN

With the introduction of single atoms in photocatalysis, a small change in the electronic and geometric structure of the substrate can result in higher energy conversion efficiency, whereas the underlying microscopic dynamics are rarely illustrated. Here, employing real-time time-dependent density functional theory, we explore the ultrafast electronic and structural dynamics of single-atom photocatalysts (SAPCs) in water splitting at the microscopic scale. The results demonstrate that a single-atom Pt loaded on graphitic carbon nitride greatly promotes photogenerated carriers compared to traditional photocatalysts, and effectively separates the excited electrons from holes, prolonging the lifetime of the excited carriers. The flexible oxidation state (Pt2+, Pt0, or Pt3+) renders the single atom as an active site to adsorb the reactant and to catalyze the reactions as a charge transfer bridge at different stages during the photoreaction process. Our results offer deep insights into the single-atom photocatalytic reactions and benefit the design of high-efficiency SAPCs.

7.
Nanomaterials (Basel) ; 13(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36839119

RESUMEN

Constructing a heterogeneous interface using different components is one of the effective measures to achieve the bifunctionality of nanocatalysts, while synergistic interactions between multiple interfaces can further optimize the performance of single-interface nanocatalysts. The non-precious metal nanocatalysts MoS2/NiSe2/reduced graphene oxide (rGO) bilayer sandwich-like nanostructure with multiple well-defined interfaces is prepared by a simple hydrothermal method. MoS2 and rGO are layered nanostructures with clear boundaries, and the NiSe2 nanoparticles with uniform size are sandwiched between both layered nanostructures. This multiple-interfaced sandwich-like nanostructure is prominent in catalytic water splitting with low overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) and almost no degradation in performance after a 20 h long-term reaction. In order to simulate the actual overall water splitting process, the prepared nanostructures are assembled into MoS2/NiSe2/rGO||MoS2/NiSe2/rGO modified two-electrode system, whose overpotential is only 1.52 mV, even exceeded that of noble metal nanocatalyst (Pt/C||RuO2~1.63 mV). This work provides a feasible idea for constructing multi-interface bifunctional electrocatalysts using nanoparticle-doped bilayer-like nanostructures.

8.
Adv Mater ; 35(6): e2207723, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36445020

RESUMEN

Thermoelectric (TE) devices exhibit considerable application potential in Internet of Things and personal health monitoring systems. However, TE self-powered devices are expensive and their fabrication process is complex. Therefore, large-scale preparation of the TE devices remains challenging. In this work, simple screen-printing technology is used to fabricate a user-friendly and high-performance paper-based TE device, which can be used in both stamp-like paper-based TE generators and infrared displays. When used as a paper-based TE generator, an output power of 940.8 µW is achieved with a temperature difference of 40 K. The programmable infrared pattern based on the TE array display could be used to realize encryption and anti-counterfeiting properties. Moreover, a visual extraction algorithm is used to develop a mobile application for processing and decoding the infrared quick response code information. These findings offer an exciting approach to using paper-based TEGs in applications such as energy harvesting devices, optical encryption, anti-counterfeiting, and dynamic infrared display.

9.
Adv Mater ; 35(2): e2206508, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36281798

RESUMEN

Pt nanocatalysts play a critical role in direct methanol fuel cells (DMFCs) due to their appropriate adsorption/desorption energy, yet suffer from an unbalanced relationship between size-dependent activity and stability. Herein, mixed-dimensional Pt-Ni alloy polyhedral nanochains (Pt-Ni PNCs) with an ordered assembly of a nanopolyhedra-nanowire-nanopolyhedra architecture are fabricated as bifunctional electrocatalysts for DMFCs, effectively alleviating the size effect. The Pt-Ni PNCs exhibit 7.23 times higher mass activity for the anodic methanol oxidation reaction (MOR) than that of commercial Pt/C. In situ Fourier transform infrared spectroscopy and CO stripping measurements demonstrate the prominent stability of the Pt-Ni PNCs to resist CO poisoning. For the cathodic oxygen reduction reaction (ORR), a positive half-wave potential exceeding Pt/C is achieved by the Pt-Ni PNCs, and it can be well maintained for 10 000 cycles with negligible activity decay. The designed nanostructure can alleviate the agglomeration and dissolution problems of 0D small-sized Pt-Ni alloy nanocrystals and enrich surface atom steps and active facets of 1D chain-like nanostructures. This work provides a proposed strategy to improve the catalytic performance of Pt-based nanocatalysts by constructing novel interfacial relationships in mixed dimensions to alleviate the imbalance between catalytic activity and catalytic stability caused by size effects.

10.
Adv Mater ; 35(2): e2206961, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36281802

RESUMEN

Interfaces formed by correlated oxides offer a critical avenue for discovering emergent phenomena and quantum states. However, the fabrication of oxide interfaces with variable crystallographic orientations and strain states integrated along a film plane is extremely challenging by conventional layer-by-layer stacking or self-assembling. Here, the creation of morphotropic grain boundaries (GBs) in laterally interconnected cobaltite homostructures is reported. Single-crystalline substrates and suspended ultrathin freestanding membranes provide independent templates for coherent epitaxy and constraint on the growth orientation, resulting in seamless and atomically sharp GBs. Electronic states and magnetic behavior in hybrid structures are laterally modulated and isolated by GBs, enabling artificially engineered functionalities in the planar matrix. This work offers a simple and scalable method for fabricating unprecedented innovative interfaces through controlled synthesis routes as well as providing a platform for exploring potential applications in neuromorphics, solid-state batteries, and catalysis.

11.
Adv Mater ; 35(2): e2208221, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36300813

RESUMEN

Interfacial magnetism stimulates the discovery of giant magnetoresistance (MR) and spin-orbital coupling across the heterointerfaces, facilitating the intimate correlation between spin transport and complex magnetic structures. Over decades, functional heterointerfaces composed of nitrides have seldom been explored due to the difficulty in synthesizing high-quality nitride films with correct compositions. Here, the fabrication of single-crystalline ferromagnetic Fe3 N thin films with precisely controlled thicknesses is reported. As film thickness decreases, the magnetization dramatically deteriorates, and the electronic state changes from metallic to insulating. Strikingly, the high-temperature ferromagnetism is maintained in a Fe3 N layer with a thickness down to 2 u.c. (≈8 Å). The MR exhibits a strong in-plane anisotropy; meanwhile, the anomalous Hall resistivity reverses its sign when the Fe3 N layer thickness exceeds 5 u.c. Furthermore, a sizable exchange bias is observed at the interfaces between a ferromagnetic Fe3 N and an antiferromagnetic CrN. The exchange bias field and saturation moment strongly depend on the controllable bending curvature using the cylinder diameter engineering technique, implying the tunable magnetic states under lattice deformation. This work provides a guideline for exploring functional nitride films and applying their interfacial phenomena for innovative perspectives toward practical applications.

12.
Sci Adv ; 8(43): eabq3981, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36306366

RESUMEN

Emergent phenomena at heterointerfaces are directly associated with the bonding geometry of adjacent layers. Effective control of accessible parameters, such as the bond length and bonding angles, offers an elegant method to tailor competing energies of the electronic and magnetic ground states. In this study, we construct unit-thick syntactic layers of cobaltites within a strongly tilted octahedral matrix via atomically precise synthesis. The octahedral tilt patterns of adjacent layers propagate into cobaltites, leading to a continuation of octahedral tilting while maintaining substantial misfit tensile strain. These effects induce severe rumpling within an atomic plane of neighboring layers, further triggering the electronic reconstruction between the splitting orbitals. First-principles calculations reveal that the cobalt ions transit to a higher spin state level upon octahedral tilting, resulting in robust ferromagnetism in ultrathin cobaltites. This work demonstrates a design methodology for fine-tuning the lattice and spin degrees of freedom in correlated quantum heterostructures by exploiting epitaxial geometric engineering.

13.
Adv Sci (Weinh) ; 9(28): e2203442, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35971181

RESUMEN

Metallization has recently garnered significant interest due to its ability to greatly facilitate chemical reactions and dramatically change the properties of materials. Materials displaying metallization under low pressure are highly desired for understanding their potential properties. In this work, the effects of the pressure on the structural and electronic properties of lead-free halide double perovskite (NH4 )2 PtI6 are investigated systematically. Remarkably, an unprecedented bandgap narrowing down to the Shockley-Queisser limit is observed at a very low pressure of 0.12 GPa, showing great promise in optoelectronic applications. More interestingly, the metallization of (NH4 )2 PtI6 is initiated at 14.2 GPa, the lowest metallization pressure ever reported in halide perovskites, which is related to the continuous increase in the overlap between the valence and conduction band of I 5p orbital. Its structural evolution upon compression before the metallic transition is also tracked, from cubic Fm-3m to tetragonal P4/mnc and then to monoclinic C2/c phase, which is mainly associated with the rotation and distortions within the [PtI6 ]2- octahedra. These findings represent a significant step toward revealing the structure-property relationships of (NH4 )2 PtI6 , and also prove that high-pressure technique is an efficient tool to design and realize superior optoelectronic materials.

14.
Adv Sci (Weinh) ; 9(20): e2200507, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35460195

RESUMEN

High-performance flexible pressure sensors have attracted a great deal of attention, owing to its potential applications such as human activity monitoring, man-machine interaction, and robotics. However, most high-performance flexible pressure sensors are complex and costly to manufacture. These sensors cannot be repaired after external mechanical damage and lack of tactile feedback applications. Herein, a high-performance flexible pressure sensor based on MXene/polyurethane (PU)/interdigital electrodes is fabricated by using a low-cost and universal spray method. The sprayed MXene on the spinosum structure PU and other arbitrary flexible substrates (represented by polyimide and membrane filter) act as the sensitive layer and the interdigital electrodes, respectively. The sensor shows an ultrahigh sensitivity (up to 509.8 kPa-1 ), extremely fast response speed (67.3 ms), recovery speed (44.8 ms), and good stability (10 000 cycles) due to the interaction between the sensitive layer and the interdigital electrodes. In addition, the hydrogen bond of PU endows the device with the self-healing function. The sensor can also be integrated with a circuit, which can realize tactile feedback function. This MXene-based high-performance pressure sensor, along with its designing/fabrication, is expected to be widely used in human activity detection, electronic skin, intelligent robots, and many other aspects.


Asunto(s)
Dispositivos Electrónicos Vestibles , Electrodos , Retroalimentación , Humanos , Poliuretanos/química , Presión , Tacto
15.
Phys Rev Lett ; 128(1): 017202, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35061447

RESUMEN

Heterointerfaces have led to the discovery of novel electronic and magnetic states because of their strongly entangled electronic degrees of freedom. Single-phase chromium compounds always exhibit antiferromagnetism following the prediction of the Goodenough-Kanamori rules. So far, exchange coupling between chromium ions via heteroanions has not been explored and the associated quantum states are unknown. Here, we report the successful epitaxial synthesis and characterization of chromium oxide (Cr_{2}O_{3})-chromium nitride (CrN) superlattices. Room-temperature ferromagnetic spin ordering is achieved at the interfaces between these two antiferromagnets, and the magnitude of the effect decays with increasing layer thickness. First-principles calculations indicate that robust ferromagnetic spin interaction between Cr^{3+} ions via anion-hybridization across the interface yields the lowest total energy. This work opens the door to fundamental understanding of the unexpected and exceptional properties of oxide-nitride interfaces and provides access to hidden phases at low-dimensional quantum heterostructures.

16.
Adv Sci (Weinh) ; 9(1): e2103574, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741444

RESUMEN

Flexible thermoelectric generators (f-TEGs) have demonstrated great potential in wearable self-powered health monitoring devices. However, the existing wearable f-TEGs are neither flexible enough to bend and stretch while maintaining the device's integrity with a good TE performance nor directly compatible with clothes materials. Here, ultraflexible fabric-based thermoelectric generators (uf-TEGs) are proposed with conductive cloth electrodes and elastic fabric substrate. The patterned elastic fabric substrate fits the rigid cuboids well, together with serpentine structured cloth electrodes, rendering uf-TEG with excellent integrity and flexibility, thereby achieving a highly functional TE performance when strain reaches 30% or on arbitrarily shaped heat sources. The uf-TEGs show a large peak power of 64.10 µW for a temperature difference of 33.24 K with a high voltage output of 111.49 mV, which is superior compared to previously reported fabric-based TEG devices, and it is still functional after the water immersion test. Besides the energy harvesting function, with both the temperature sensing ability and the touch perception, this uf-TEG is demonstrated as the electrical skin when mounted on a robot. Moreover, due to the wind-sensitive performance and self-power ability, the uf-TEGs are assembled on cloth as wearable health and motion monitoring devices.


Asunto(s)
Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Textiles , Sensación Térmica , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Suministros de Energía Eléctrica , Electrónica , Diseño de Equipo , Calor
17.
Adv Sci (Weinh) ; 9(2): e2102978, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34766740

RESUMEN

Understanding hot carrier dynamics between plasmonic nanomaterials and its adsorbate is of great importance for plasmon-enhanced photoelectronic processes such as photocatalysis, optical sensing and spectroscopic analysis. However, it is often challenging to identify specific dominant mechanisms for a given process because of the complex pathways and ultrafast interactive dynamics of the photoelectrons. Here, using CO2 reduction as an example, the underlying mechanisms of plasmon-driven catalysis at the single-molecule level using time-dependent density functional theory calculations is clearly probed. The CO2 molecule adsorbed on two typical nanoclusters, Ag20 and Ag147 , is photoreduced by optically excited plasmon, accompanied by the excitation of asymmetric stretching and bending modes of CO2 . A nonlinear relationship has been identified between laser intensity and reaction rate, demonstrating a synergic interplay and transition from indirect hot-electron transfer to direct charge transfer, enacted by strong localized surface plasmons. These findings offer new insights for CO2 photoreduction and for the design of effective pathways toward highly efficient plasmon-mediated photocatalysis.

18.
Nano Lett ; 21(24): 10507-10515, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34870440

RESUMEN

Orientation control of the oxygen vacancy channel (OVC) is highly desirable for tailoring oxygen diffusion as it serves as a fast transport channel in ion conductors, which is widely exploited in solid-state fuel cells, catalysts, and ion-batteries. Direct observation of oxygen-ion hopping toward preferential vacant sites is a key to clarifying migration pathways. Here we report anisotropic oxygen-ion migration mediated by strain in ultrathin cobaltites via in situ thermal activation in atomic-resolved transmission electron microscopy. Oxygen migration pathways are constructed on the basis of the atomic structure during the OVC switching, which is manifested as the vertical-to-horizontal OVC switching under tensile strain but the horizontal-to-diagonal switching under compression. We evaluate the topotactic structural changes to the OVC, determine the crucial role of the tolerance factor for OVC stability, and establish the strain-dependent phase diagram. Our work provides a practical guide for engineering OVC orientation that is applicable to ionic-oxide electronics.

19.
J Phys Condens Matter ; 34(6)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34740209

RESUMEN

Oxygen-vacancy-induced topotactic phase transformation between the ABO2.5brownmillerite structure and the ABO3perovskite structure attracts ever-increasing attention due to the perspective applications in catalysis, clean energy field, and memristors. However, a detailed investigation of the electronic-structure evolution during the topotactic phase transformation for understanding the underlying mechanism is highly desired. In this work, multiple analytical methods were used to explore evolution of the electronic structure of SrFeO3-xthin films during the topotactic phase transformation. The results indicate that the increase in oxygen content induces a new unoccupied state of O 2pcharacter near the Fermi energy, inducing the insulator-to-metal transition. More importantly, the hole states are more likely constrained to thedx2-y2orbital than to thed3z2-r2orbital. Our results reveal an unambiguous evolution of the electronic structure of SrFeO3-xfilms during topotactic phase transformation, which is crucial not only for fundamental understanding but also for perspective applications such as solid-state oxide fuel cells, catalysts, and memristor devices.

20.
Phys Chem Chem Phys ; 23(35): 19308-19312, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34524306

RESUMEN

Lead-free halide double perovskites (HDPs) have recently been proposed as potential stable and environment-friendly alternatives to lead-based halide perovskites. Bandgap engineering plays a vital role in the optoelectronic applications of HDP materials. In this study, methods combining high-pressure techniques with density functional theory calculations were employed to implement the bandgap engineering of a classic HDP-based (NH4)2SnBr6. Under high pressure, (NH4)2SnBr6 exhibits a redshift of the bandgap with increasing pressure up to 6.3 GPa and a sudden blueshift up to 20.2 GPa, followed by a redshift at higher pressures, which is relevant to the cubic-tetragonal phase transition, direct-indirect transition, and amorphization, respectively. Our results enrich the understanding of the structural-optical properties of (NH4)2SnBr6 and reveal the special role of NH4+ cations in pressure-induced bandgap engineering, thus providing important information for application in optoelectronic devices and helping to design ideal materials with higher efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...