Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(13)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610467

RESUMEN

: As the only woody resurrection plant, Myrothamnus flabellifolia has a strong tolerance to drought and can survive long-term in a desiccated environment. However, the molecular mechanisms related to the stress tolerance of M. flabellifolia are largely unknown, and few tolerance-related genes previously identified had been functionally characterized. WRKYs are a group of unique and complex plant transcription factors, and have reported functions in diverse biological processes, especially in the regulation of abiotic stress tolerances, in various species. However, little is known about their roles in response to abiotic stresses in M. flabellifolia. In this study, we characterized a dehydration-inducible WRKY transcription factor gene, MfWRKY17, from M. flabellifolia. MfWRKY17 shows high degree of homology with genes from Vitis vinifera and Vitis pseudoreticulata, belonging to group II of the WRKY family. Unlike known WRKY17s in other organisms acting as negative regulators in biotic or abiotic stress responses, overexpression of MfWRKY17 in Arabidopsis significantly increased drought and salt tolerance. Further investigations indicated that MfWRKY17 participated in increasing water retention, maintaining chlorophyll content, and regulating ABA biosynthesis and stress-related gene expression. These results suggest that MfWRKY17 possibly acts as a positive regulator of stress tolerance in the resurrection plant M. flabellifolia.


Asunto(s)
Proteínas de Arabidopsis/genética , Deshidratación/genética , Tolerancia a la Sal/genética , Factores de Transcripción/genética , Adaptación Fisiológica/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Magnoliopsida/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo
2.
PeerJ ; 4: e2620, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27812419

RESUMEN

The proteins containing the TIFY domain belong to a plant-specific family of putative transcription factors and could be divided into four subfamilies: ZML, TIFY, PPD and JAZ. They not only function as key regulators of jasmonate hormonal response, but are also involved in responding to abiotic stress. In this study, we identified 24 TIFY genes (PeTIFYs) in Moso bamboo (Phyllostachys edulis) of Poaceae by analyzing the whole genome sequence. One PeTIFY belongs to TIFY subfamily, 18 and five belong to JAZ and ZML subfamilies, respectively. Two equivocal gene models were re-predicted and a putative retrotransposition event was found in a ZML protein. The distribution and conservation of domain or motif, and gene structure were also analyzed. Phylogenetic analysis with TIFY proteins of Arabidopsis and Oryza sativa indicated that JAZ subfamily could be further divided to four groups. Evolutionary analysis revealed intragenomic duplication and orthologous relationship between P. edulis, O. sativa, and B. distachyon. Calculation of the non-synonymous (Ka) and synonymous (Ks) substitution rates and their ratios indicated that the duplication of PeTIFY may have occurred around 16.7 million years ago (MYA), the divergence time of TIFY family among the P. edulis-O. sativa, P. edulis-B. distachyon, and O. sativa-B. distachyon was approximately 39 MYA, 39 MYA, and 45 MYA, respectively. They appear to have undergone extensive purifying selection during evolution. Transcriptome sequencing revealed that more than 50% of PeTIFY genes could be up-regulated by cold and dehydration stresses, and some PeTIFYs also share homology to know TIFYs involved in abiotic stress tolerance. Our results made insights into TIFY family of Moso bamboo, an economically important non-timber forest resource, and provided candidates for further identification of genes involved in regulating responses to abiotic stress.

3.
PLoS One ; 11(11): e0165953, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27829056

RESUMEN

Late embryogenesis abundant (LEA) proteins have been identified in a wide range of organisms and are believed to play a role in the adaptation of plants to stress conditions. In this study, we performed genome-wide identification of LEA proteins and their coding genes in Moso bamboo (Phyllostachys edulis) of Poaceae. A total of 23 genes encoding LEA proteins (PeLEAs) were found in P. edulis that could be classified to six groups based on Pfam protein family and homologous analysis. Further in silico analyses of the structures, gene amount, and biochemical characteristics were conducted and compared with those of O. sativa (OsLEAs), B. distachyon (BdLEAs), Z. mays (ZmLEAs), S. bicolor (SbLEAs), Arabidopsis, and Populus trichocarpa. The less number of PeLEAs was found. Evolutionary analysis revealed orthologous relationship and colinearity between P. edulis, O. sativa, B. distachyon, Z. mays, and S. bicolor. Analyses of the non-synonymous (Ka) and synonymous (Ks)substitution rates and their ratios indicated that the duplication of PeLEAs may have occurred around 18.8 million years ago (MYA), and divergence time of LEA family among the P. edulis-O. sativa and P. edulis-B. distachyon, P. edulis-S. bicolor, and P. edulis-Z. mays was approximately 30 MYA, 36 MYA, 48 MYA, and 53 MYA, respectively. Almost all PeLEAs contain ABA- and (or) stress-responsive regulatory elements. Further RNA-seq analysis revealed approximately 78% of PeLEAs could be up-regulated by dehydration and cold stresses. The present study makes insights into the LEA family in P. edulis and provides inventory of stress-responsive genes for further functional validation and transgenic research aiming to plant genetic improvement of abiotic stress tolerance.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Proteínas de Plantas/genética , Poaceae/genética , Adaptación Fisiológica/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Frío , Sequías , Evolución Molecular , Variación Genética , Familia de Multigenes , Oryza/genética , Proteínas de Plantas/clasificación , Poaceae/clasificación , Estrés Fisiológico , Sintenía , Factores de Tiempo
4.
Genet Mol Biol ; 39(4): 616-628, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27560992

RESUMEN

DREB1 of the AP2/ERF superfamily plays a key role in the regulation of plant response to low temperatures. In this study, a novel DREB1/CBF transcription factor, PnDREB1, was isolated from Iceland poppy (Papaver nudicaule), a plant adaptive to low temperature environments. It is homologous to the known DREB1s of Arabidopsis and other plant species. It also shares similar 3D structure, and conserved and functionally important motifs with DREB1s of Arabidopsis. The phylogenetic analysis indicated that the AP2 domain of PnDREB1 is similar to those of Glycine max, Medicago truncatula, and M. sativa. PnDREB1 is constitutively expressed in diverse tissues and is increased in roots. qPCR analyses indicated that PnDREB1 is significantly induced by freezing treatment as well as by abscissic acid. The expression levels induced by freezing treatment were higher in the variety with higher degree of freezing tolerance. These results suggested that PnDREB1 is a novel and functional DREB1 transcription factor involved in freezing response and possibly in other abiotic stresses. Furthermore, the freezing-induction could be suppressed by exogenous gibberellins acid, indicating that PnDREB1 might play some role in the GA signaling transduction pathway. This study provides a basis for better understanding the roles of DREB1 in adaption of Iceland poppy to low temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...