Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1310, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225277

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor of the head and neck, and the incidence rate is increasing year by year. Protein post-translational modification, recognized as a pivotal and extensive form of protein modification, has been established to possess a profound association with tumor occurrence and progression. This study employed bioinformatics analysis utilizing transcriptome sequencing data, patient survival data, and clinical data from HNSCC to establish predictive markers of genes associated with glycosylation as prognostic risk markers. The R procedure WGCNA was employed to construct a gene co-expression network using the gene expression profile and clinical characteristics of HNSCC samples. Multiple Cox Proportional Hazards Regression Model (Cox regression) and LASSO analysis were conducted to identify the key genes exhibiting the strongest association with prognosis. A risk score, known as the glycosylation-related genes risk score (GLRS), was subsequently formulated utilizing the aforementioned core genes. This scoring system facilitated the classification of samples into high-risk and low-risk categories, thereby enabling the prediction of patient prognosis. The association between GLRS and clinical variables was examined through both univariate and multivariate Cox regression analysis. The validation of six core genes was accomplished using quantitative real-time polymerase chain reaction (qRT-PCR). The findings demonstrated noteworthy variations in risk scores among subgroups, thereby affirming the efficacy of GLRS in prognosticating patient outcomes. Furthermore, a correlation has been observed between the risk-scoring model and immune infiltration. Moreover, significant disparities exist in the expression levels of diverse immune checkpoints, epithelial-mesenchymal transition genes, and angiogenic factors between the high and low-risk groups.


Asunto(s)
Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Glicosilación , Neoplasias de Cabeza y Cuello/genética , Cabeza , Pronóstico , Puntuación de Riesgo Genético
2.
Zool Res ; 45(1): 201-214, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38199974

RESUMEN

Glycogen serves as the principal energy reserve for metabolic processes in aquatic shellfish and substantially contributes to the flavor and quality of oysters. The Jinjiang oyster ( Crassostrea ariakensis) is an economically and ecologically important species in China. In the present study, RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) were performed to investigate gene expression and chromatin accessibility variations in oysters with different glycogen contents. Analysis identified 9 483 differentially expressed genes (DEGs) and 7 215 genes with significantly differential chromatin accessibility (DCAGs) were obtained, with an overlap of 2 600 genes between them. Notably, a significant proportion of these genes were enriched in pathways related to glycogen metabolism, including "Glycogen metabolic process" and "Starch and sucrose metabolism". In addition, genome-wide association study (GWAS) identified 526 single nucleotide polymorphism (SNP) loci associated with glycogen content. These loci corresponded to 241 genes, 63 of which were categorized as both DEGs and DCAGs. This study enriches basic research data and provides insights into the molecular mechanisms underlying the regulation of glycogen metabolism in C. ariakensis.


Asunto(s)
Crassostrea , Animales , Crassostrea/genética , Estudio de Asociación del Genoma Completo/veterinaria , Secuenciación de Inmunoprecipitación de Cromatina/veterinaria , RNA-Seq/veterinaria , Análisis de Secuencia de ARN/veterinaria , Cromatina , Glucógeno
3.
DNA Res ; 30(5)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37788574

RESUMEN

Characiformes is a diverse and evolutionarily significant order of freshwater fish encompassing over 2,300 species. Despite its diversity, our understanding of Characiformes' evolutionary relationships and adaptive mechanisms is limited due to insufficient genome sequences. In this study, we sequenced and assembled the genomes of four Characiformes species, three of which were chromosome-level assemblies. Our analyses revealed dynamic changes in gene family evolution, repeat sequences and variations in chromosomal collinearity within these genomes. With the assembled genomes, we were not only able to elucidate the evolutionary relationship of the four main orders in Otophysi but also indicated Characiformes as the paraphyletic group. Comparative genomic analysis with other available fish genomes shed light on the evolution of genes related to tooth development in Characiformes. Notably, variations in the copy number of secretory calcium-binding phosphoproteins (SCPP) genes were observed among different orders of Otophysi, indicating their potential contribution to the diversity of tooth types. Our study offers invaluable genome sequences and novel insights into Characiformes' evolution, paving the way for further genomic and evolutionary research in fish.


Asunto(s)
Characiformes , Animales , Filogenia , Characiformes/genética , Genoma , Secuencia de Bases , Genómica
4.
Front Plant Sci ; 13: 990064, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407576

RESUMEN

Carya, in the Juglandiodeae subfamily, is to a typical temperate-subtropical forest-tree genus for studying the phylogenetic evolution and intercontinental disjunction between eastern Asia (EA) and North America (NA). Species of the genus have high economic values worldwide for their high-quality wood and the rich healthy factors of their nuts. Although previous efforts based on multiple molecular markers or genome-wide SNPs supported the monophyly of Carya and its two EA and NA major subclades, the maternal phylogeny of Carya still need to be comprehensively evaluated. The variation of Carya plastome has never been thoroughly characterized. Here, we novelly present 19 newly generated plastomes of congeneric Carya species, including the recently rediscovered critically endangered C. poilanei. The overall assessment of plastomes revealed highly conservative in the general structures. Our results indicated that remarkable differences in several plastome features are highly consistent with the EA-NA disjunction and showed the relatively diverse matrilineal sources among EA Carya compared to NA Carya. The maternal phylogenies were conducted with different plastome regions and full-length plastome datasets from 30 plastomes, representing 26 species in six genera of Juglandoideae and Myrica rubra (as root). Six out of seven phylogenetic topologies strongly supported the previously reported relationships among genera of Juglandoideae and the two subclades of EA and NA Carya, but displayed significant incongruencies between species within the EA and NA subclades. The phylogenetic tree generated from full-length plastomes demonstrated the optimal topology and revealed significant geographical maternal relationships among Carya species, especially for EA Carya within overlapping distribution areas. The full-length plastome-based phylogenetic topology also strongly supported the taxonomic status of five controversial species as separate species of Carya. Historical and recent introgressive hybridization and plastid captures might contribute to plastome geographic patterns and inconsistencies between topologies built from different datasets, while incomplete lineage sorting could account for the discordance between maternal topology and the previous nuclear genome data-based phylogeny. Our findings highlight full-length plastomes as an ideal tool for exploring maternal relationships among the subclades of Carya, and potentially in other outcrossing perennial woody plants, for resolving plastome phylogenetic relationships.

5.
Nat Ecol Evol ; 6(12): 1907-1920, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36266460

RESUMEN

Changes in developmental gene regulatory networks (dGRNs) underlie much of the diversity of life, but the evolutionary mechanisms that operate on regulatory interactions remain poorly understood. Closely related species with extreme phenotypic divergence provide a valuable window into the genetic and molecular basis for changes in dGRNs and their relationship to adaptive changes in organismal traits. Here we analyse genomes, epigenomes and transcriptomes during early development in two Heliocidaris sea urchin species that exhibit highly divergent life histories and in an outgroup species. Positive selection and chromatin accessibility modifications within putative regulatory elements are enriched on the branch leading to the derived life history, particularly near dGRN genes. Single-cell transcriptomes reveal a dramatic delay in cell fate specification in the derived state, which also has far fewer open chromatin regions, especially near conserved cell fate specification genes. Experimentally perturbing key transcription factors reveals profound evolutionary changes to early embryonic patterning events, disrupting regulatory interactions previously conserved for ~225 million years. These results demonstrate that natural selection can rapidly reshape developmental gene expression on a broad scale when selective regimes abruptly change. More broadly, even highly conserved dGRNs and patterning mechanisms in the early embryo remain evolvable under appropriate ecological circumstances.


Asunto(s)
Anthocidaris , Redes Reguladoras de Genes , Animales , Anthocidaris/genética , Erizos de Mar/genética , Evolución Biológica , Cromatina
6.
Plant Commun ; 2(6): 100247, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34778752

RESUMEN

Pecan (Carya illinoinensis) is a tree nut crop of worldwide economic importance that is rich in health-promoting factors. However, pecan production and nut quality are greatly challenged by environmental stresses such as the outbreak of severe fungal diseases. Here, we report a high-quality, chromosome-scale genome assembly of the controlled-cross pecan cultivar 'Pawnee' constructed by integrating Nanopore sequencing and Hi-C technologies. Phylogenetic and evolutionary analyses reveal two whole-genome duplication (WGD) events and two paleo-subgenomes in pecan and walnut. Time estimates suggest that the recent WGD event and considerable genome rearrangements in pecan and walnut account for expansions in genome size and chromosome number after the divergence from bayberry. The two paleo-subgenomes differ in size and protein-coding gene sets. They exhibit uneven ancient gene loss, asymmetrical distribution of transposable elements (especially LTR/Copia and LTR/Gypsy), and expansions in transcription factor families (such as the extreme pecan-specific expansion in the far-red impaired response 1 family), which are likely to reflect the long evolutionary history of species in the Juglandaceae. A whole-genome scan of resequencing data from 86 pecan scab-associated core accessions identified 47 chromosome regions containing 185 putative candidate genes. Significant changes were detected in the expression of candidate genes associated with the chitin response pathway under chitin treatment in the scab-resistant and scab-susceptible cultivars 'Excell' and 'Pawnee'. These findings enable us to identify key genes that may be important susceptibility factors for fungal diseases in pecan. The high-quality sequences are valuable resources for pecan breeders and will provide a foundation for the production and quality improvement of tree nut crops.


Asunto(s)
Carya/genética , Carya/inmunología , Evolución Molecular , Hongos del Género Venturia/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Carya/microbiología , Mapeo Cromosómico , Productos Agrícolas/genética , Productos Agrícolas/inmunología , Genoma de Planta , Filogenia , Fitomejoramiento/métodos
7.
Ann Transl Med ; 9(20): 1537, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34790743

RESUMEN

BACKGROUND: This investigation examined the effects of the microRNA miR-34c-5p on the proliferation, migration, and invasion of oral squamous cell carcinoma (OSCC) and the mechanisms involved. METHODS: The Gene Expression Omnibus (GEO) database was used to filter the chips, and the GEO2R software (https://www.ncbi.nlm.nih.gov/geo/geo2r/) was used to analyze the microarray data (GSE28100 and GSE45238). Gene set enrichment analysis (GSEA) was used to study the relationship between the expression of miR-34c-5p and the distant metastasis and pathological grade of OSCC. The correlation between TRIM29 (tripartite motif containing 29) expression and the malignant clinical phenotype of OSCC was also examined. The mRNA and protein expression levels of miR-34c-5p and TRIM29 were measured by real time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot analysis. The proliferation, migration, invasion and apoptosis of the human oral squamous carcinoma cell lines CAL-27 and Tca8113 was assessed by performing cell-counting kit-8 (CCK-8) assays, colony formation assays, transwell tests, wound scratch tests and flow cytometry. Luciferase reporter assays were used to predict the relationship between miR-34c-5p and TRIM29. A xenograft nude model was established and used to evaluate the effect of miR-34c-5p on tumor growth in female BALB/c mice. RESULTS: The expression of miR-34c-5p was significantly correlated with the proliferation, migration, and metastasis of OSCC. Overexpression of miR-34c-5p promoted the proliferation, migration, and invasion of CAL-27 and Tca8113 cells, and suppressed their apoptosis. Inversely, low expression of miR-34c-5p suppressed the proliferation, migration, and invasion of CAL-27 and Tca8113 cells, and promoted their apoptosis. Overexpression of miR-34c-5p promoted tumor growth in the xenograft nude mice model. The expression of TRIM29 was related to malignant clinical phenotype of OSCC. Overexpression of TRIM29 inhibited the proliferation, migration and invasion of CAL-27 and Tca8113 cell, and induced their apoptosis. TRIM29 knockout had just the opposite effect. Importantly, miR-34c-5p binds to TRIM29 and inhibited TRIM29 expression. CONCLUSIONS: MiR-34c-5p regulates the proliferation, migration, invasion, and apoptosis of OSCC through targeted binding of TRIM29. This may represent a novel therapeutic target for the treatment of patients with OSCC.

9.
Genomics ; 113(2): 717-726, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33535123

RESUMEN

High quality genome is of great significance for the mining of biological information resources of species. Up to now, the genomic information of several important economic flatfishes has been well explained. All these fishes are eyes on left side-type, and no high-quality genome of eyes on right side-type species has been reported. In this study, we applied a combined strategy involving stLFR and Hi-C technologies to generate sequencing data for constructing the chromosomal genome of Verasper variegates, which belongs to Pleuronectidae with characteristic of eyes on right side. The size of genome of V. variegatus is 556 Mb. More than 97.2% of BUSCO genes were detected, and N50 lengths of the contigs and scaffolds reached 79.8 Kb and 23.8 Mb, respectively, demonstrating the outstanding completeness and sequence continuity of the genome. A total of 22,199 protein-coding genes were predicted in the assembled genome, and more than 95% of those genes could be functionally annotated. Meanwhile, the genomic collinearity, gene family and phylogenetic analyses of similar species in Pleuronectiformes were also investigated and portrayed for metamorphosis and benthic adaptation. Sex related genes mapping has also been achieved at the chromosome level. This study is the first chromosomal level genome of a Pleuronectidae fish (V. variegatus). The chromosomal genome assembly constructed in this work will not only be valuable for conservation and aquaculture studies of the V. variegatus but will also be of general interest in the phylogenetic and taxonomic studies of Pleuronectiformes.


Asunto(s)
Peces Planos/genética , Genoma , Filogenia , Animales , Cromosomas/genética , Proteínas de Peces/genética , Peces Planos/clasificación , Anotación de Secuencia Molecular
10.
Genome Biol Evol ; 12(7): 1080-1086, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32433766

RESUMEN

Lytechinus variegatus is a camarodont sea urchin found widely throughout the western Atlantic Ocean in a variety of shallow-water marine habitats. Its distribution, abundance, and amenability to developmental perturbation make it a popular model for ecologists and developmental biologists. Here, we present a chromosomal-level genome assembly of L. variegatus generated from a combination of PacBio long reads, 10× Genomics sequencing, and HiC chromatin interaction sequencing. We show L. variegatus has 19 chromosomes with an assembly size of 870.4 Mb. The contiguity and completeness of this assembly are reflected by a scaffold length N50 of 45.5 Mb and BUSCO completeness score of 95.5%. Ab initio and transcript-informed gene modeling and annotation identified 27,232 genes with an average gene length of 12.6 kb, comprising an estimated 39.5% of the genome. Repetitive regions, on the other hand, make up 45.4% of the genome. Physical mapping of well-studied developmental genes onto each chromosome reveals nonrandom spatial distribution of distinct genes and gene families, which provides insight into how certain gene families may have evolved and are transcriptionally regulated in this species. Lastly, aligning RNA-seq and ATAC-seq data onto this assembly demonstrates the value of highly contiguous, complete genome assemblies for functional genomics analyses that is unattainable with fragmented, incomplete assemblies. This genome will be of great value to the scientific community as a resource for genome evolution, developmental, and ecological studies of this species and the Echinodermata.


Asunto(s)
Genoma , Genómica/métodos , Lytechinus/genética , Animales , Mapeo Cromosómico , Anotación de Secuencia Molecular
11.
Front Physiol ; 10: 293, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30967793

RESUMEN

Cardiac activity has been widely used in marine molluscs as an indicator for their physiological status in response to environmental changes, which is, however, largely less studied in scallops. Here, we monitored cardiac performance of Zhikong scallop Chlamys farreri using an infrared-based method, and evaluated the effects of several biotic (shell height, total weight, and age) and environmental factors (circadian rhythm and temperature) on scallop heart rate (HR), amplitude (HA), and rate-amplitude product (RAP). Results revealed that size has a significant effect on both HR (negative) and HA (positive), but RAP values are similar in different sized scallops. Age also affects scallop cardiac performance, significantly for HR, but not for HA or RAP. Circadian rhythm affects cardiac activity, with significant elevation of HR, HA and RAP during 1:00-8:00 and 17:00-19:00. With seawater temperature elevation, HR peaks at 30.03 ± 0.23°C, HA at 15.08 ± 0.02°C, and RAP at 15.10 ± 0.19 and 30.12 ± 0.28°C. This suggests HR is a good indicator for thermal limit, whereas HA may indicate optimal growth temperature, and RAP could be an index of myocardial oxygen consumption to indicate myocardium stress. Our study provides basic information on the factors that may affect scallop cardiac performance. It also elucidates the feasibility of HA and RAP as cardiac indices in marine molluscs.

12.
Genome Res ; 28(12): 1919-1930, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30409770

RESUMEN

Targeted genotyping of transcriptome-scale genetic markers is highly attractive for genetic, ecological, and evolutionary studies, but achieving this goal in a cost-effective manner remains a major challenge, especially for laboratories working on nonmodel organisms. Here, we develop a high-throughput, sequencing-based GoldenGate approach (called HD-Marker), which addresses the array-related issues of original GoldenGate methodology and allows for highly multiplexed and flexible targeted genotyping of more than 12,000 loci in a single-tube assay (in contrast to fewer than 3100 in the original GoldenGate assay). We perform extensive analyses to demonstrate the power and performance of HD-Marker on various multiplex levels (296, 795, 1293, and 12,472 genic SNPs) across two sequencing platforms in two nonmodel species (the scallops Chlamys farreri and Patinopecten yessoensis), with extremely high capture rate (98%-99%) and genotyping accuracy (97%-99%). We also demonstrate the potential of HD-Marker for high-throughput targeted genotyping of alternative marker types (e.g., microsatellites and indels). With its remarkable cost-effectiveness (as low as $0.002 per genotype) and high flexibility in choice of multiplex levels and marker types, HD-Marker provides a highly attractive tool over array-based platforms for fulfilling genome/transcriptome-wide targeted genotyping applications, especially in nonmodel organisms.


Asunto(s)
Marcadores Genéticos , Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento , Alelos , Genotipo , Mutación INDEL , Repeticiones de Microsatélite , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
Fish Shellfish Immunol ; 80: 141-147, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29879509

RESUMEN

Cathepsin F is a unique papain cysteine proteinase with highly conserved structures: catalytic triad and a cystatin domain contained in the elongated N-terminal pro-region. It has been reported that cathepsin F is associated with the establishment of innate immune in several vertebrate including fish in aquaculture, but not known in bivalves. In this study, we firstly identified and characterized cathepsin F in the Yesso scallop (Patinopecten yessoensis). The protein structural and phylogenetic analyses were then conducted to determine its identity and evolutionary position. We've also investigated the expression levels of cathepsin F gene at different embryonic developmental stages, in healthy adult tissues and especially in the hemocytes and hepatopancreas after Gram-positive (Micrococcus luteus) and negative (Vibrio anguillarum) challenges using quantitative real-time PCR (qPCR). Cathepsin F was significantly up-regulated 3 h after infection of V. anguillarum in hemocytes, suggesting its participation in immune response. Our findings have provided strong evidence that cathepsin F may be a good target for enhancing the immune activity in Yesso scallop.


Asunto(s)
Catepsina F , Infecciones por Bacterias Grampositivas/inmunología , Pectinidae/genética , Pectinidae/inmunología , Vibriosis/inmunología , Secuencia de Aminoácidos , Animales , Catepsina F/química , Catepsina F/genética , Catepsina F/inmunología , Infecciones por Bacterias Grampositivas/veterinaria , Hemocitos/inmunología , Hepatopáncreas/inmunología , Micrococcus luteus , Filogenia , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Mensajero/genética , Vibrio , Vibriosis/veterinaria
14.
Nat Ecol Evol ; 1(5): 120, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28812685

RESUMEN

Reconstructing the genomes of bilaterian ancestors is central to our understanding of animal evolution, where knowledge from ancient and/or slow-evolving bilaterian lineages is critical. Here we report a high-quality, chromosome-anchored reference genome for the scallop Patinopecten yessoensis, a bivalve mollusc that has a slow-evolving genome with many ancestral features. Chromosome-based macrosynteny analysis reveals a striking correspondence between the 19 scallop chromosomes and the 17 presumed ancestral bilaterian linkage groups at a level of conservation previously unseen, suggesting that the scallop may have a karyotype close to that of the bilaterian ancestor. Scallop Hox gene expression follows a new mode of subcluster temporal co-linearity that is possibly ancestral and may provide great potential in supporting diverse bilaterian body plans. Transcriptome analysis of scallop mantle eyes finds unexpected diversity in phototransduction cascades and a potentially ancient Pax2/5/8-dependent pathway for noncephalic eyes. The outstanding preservation of ancestral karyotype and developmental control makes the scallop genome a valuable resource for understanding early bilaterian evolution and biology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...