Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(10): 4476-4486, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38382547

RESUMEN

Antibiotic resistance genes (ARGs) are ancient but have become a modern critical threat to health. Gut microbiota, a dynamic reservoir for ARGs, transfer resistance between individuals. Surveillance of the antibiotic resistome in the gut during different host growth phases is critical to understanding the dynamics of the resistome in this ecosystem. Herein, we disentangled the ARG profiles and the dynamic mechanism of ARGs in the egg and adult phases of Tetramorium caespitum. Experimental results showed a remarkable difference in both gut microbiota and gut resistome with the development of T. caespitum. Meta-based metagenomic results of gut microbiota indicated the generalizability of gut antibiotic resistome dynamics during host development. By using Raman spectroscopy and metabolomics, the metabolic phenotype and metabolites indicated that the biotic phase significantly changed lipid metabolism as T. caespitum aged. Lipid metabolites were demonstrated as the main factor driving the enrichment of ARGs in T. caespitum. Cuminaldehyde, the antibacterial lipid metabolite that displayed a remarkable increase in the adult phase, was demonstrated to strongly induce ARG abundance. Our findings show that the gut resistome is host developmental stage-dependent and likely modulated by metabolites, offering novel insights into possible steps to reduce ARG dissemination in the soil food chain.


Asunto(s)
Antibacterianos , Hormigas , Genes Bacterianos , Humanos , Adulto , Anciano , Antibacterianos/farmacología , Ecosistema , Lípidos
2.
Environ Int ; 170: 107647, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36413928

RESUMEN

Domestic refrigerator is a widely used appliance to keep food fresh and retard food spoilage in household. However, our understanding of microbial health risk associated with food under such circumstance still remains very poor. Here, typical types of food (vegetable, fish, and pork) were kept in a domestic refrigerator at 4 °C for 3-30 days. Temporal dynamics of antibiotic resistome, pathogens, bacterial and fungal communities during this period were investigated via high-throughput quantification and Illumina sequencing technologies. Results showed that a large number (21-134) of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) were detected across the three food types, including 10.06 % of high-risk ARGs classified by their risk ranks. Moreover, four bacterial pathogens (i.e., Bacillus cereus, Cronobacter spp., Klebsiella pneumoniae and Staphylococcus aureus) targeted by marker genes including the pathogen-specific genes or virulence factor genes, and some potential fungal pathogens (e.g., Fusarium, Candida, and Aspergillus) were detected, indicating the occurrence of microbial risk even at the normally regarded safe storage temperature. Among all food types, the total bacterial density and ARG abundances in fish rapidly increased after only 3 days, much faster than vegetable and pork after 10 days. In addition, fish samples contained the highest ARG and pathogen abundances, indicating its potentially higher health risk than other food types. Finally, the shifts of ARG pattern were mainly contributed by bacterial communities and MGEs. This study highlights that food preserved in refrigerator at 4 °C could still be an unneglected microbial risk, and raises awareness of improving food safety in domestic environment.


Asunto(s)
Antibacterianos , Farmacorresistencia Microbiana/genética
3.
J Hazard Mater ; 436: 129261, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739780

RESUMEN

The massive food wastes pose a growing health concern for spreading of antibiotic resistance and pathogens due to food spoilage. However, little is known about these microbial hazards during collection, classification, and transportation before eventual treatment. Here, we profiled the temporal variations of antibiotic resistance genes (ARGs), pathogens, bacterial and fungal communities across four typical food wastes (vegetable, fish, meat, and rice) during storage at room temperature in summer (maximum 28-29 °C) of typical southeast city in China. A total of 171 ARGs and 32 mobile genetic elements were detected, and the absolute abundance of ARGs significantly increased by up to 126-fold with the storage time. Additionally, five bacterial pathogens containing virulence factor genes were detected, and Klebsiella pneumoniae was persistently detected throughout the storage time in all food types except rice. Moreover, fungal pathogens (e.g., Aspergillus, Penicillium, and Fusarium) were also frequently detected. Notably, animal food wastes were demonstrated to harbor higher abundance of ARGs and more types of pathogens, indicating a higher level of hazard. Mobile genetic elements and food types were demonstrated to mainly impact ARG profiles and pathogens, respectively. This work provides a comprehensive understanding of the microbial hazards associated with food waste recycling, and will contribute to optimize the food waste management to ensure biosecurity and benefit human health.


Asunto(s)
Antibacterianos , Eliminación de Residuos , Alimentación Animal , Animales , Antibacterianos/farmacología , Bacterias/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos
4.
Sci Total Environ ; 837: 155719, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35526626

RESUMEN

Larvae of superworms (Zophobas atratus Fab.) and yellow mealworms (Tenebrio molitor Linn.) can survive on sole plastic diets. However, no side-by-side comparison of plastics degradation by both species is available yet. Here, superworms and yellow mealworms were fed with polystyrene (PS) or polyurethane (PU) foam plastics as sole diets for 35 days with bran as control. Superworms survived 100% on all diets but decreased weights were observed after 20 days with sole plastic diets. In contrast, yellow mealworms survived 84.67% or 62.67% with PS or PU diet, respectively, both plastics diet groups showed increased weights. Cumulative consumption of plastics by superworms were 49.24 mg-PS/larva and 26.23 mg-PU/larva, which were 18 and 11 folds of that of yellow mealworms, respectively. When converted into mg/g-larvae, superworms had a higher PS consumption rate but both species had similar PU consumption rates. Similar changes of the plastic chemical functional groups in frass indicated occurrences of oxidation and biodegradation of plastics in the guts of both species. Changes of gut microbial communities were found associated with plastics feedstocks and larvae species. The increased relative abundances of unclassified Enterobacteriaceae, Klebsiella, Enterococcus, Dysgonomonas and Sphingobacterium were strongly associated with PS diet in superworms, while Hafnia was strongly associated with PS diet in yellow mealworms. Enterococcus and Mangrovibacter were dominant in PU-fed superworm guts, while unclassified Enterobacteriaceae and Hafnia were strongly associated with PU feeding in yellow mealworms. The results demonstrated that different plastics ingestion preferences and efficiencies of both species were associated with distinct dominant microbiomes although similar changes of chemical groups in plastics were observed.


Asunto(s)
Escarabajos , Microbioma Gastrointestinal , Tenebrio , Animales , Escarabajos/metabolismo , Ingestión de Alimentos , Enterobacteriaceae/metabolismo , Larva/metabolismo , Plásticos/metabolismo , Poliestirenos/metabolismo , Tenebrio/metabolismo
5.
Chemosphere ; 282: 131006, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34118623

RESUMEN

In order to uncover the plastic types that superworm Zophobas atratus can degrade and the underlying changes associated with plastics consumption, three types of plastics including polystyrene (PS), polyethylene (PE) and polyurethane (PU) foam were used as sole feedstock to feed the superworm larvae for 35 days with bran as control. Compared to the control, PS- or PU-fed larvae showed 100% survival rates, the PE-fed and starvation larvae had decreased survival rates of 81.67% and 65%, respectively. Both plastics-fed and starvation groups showed decreased larvae weight. The consumption rates of PS, PE, and PU were 1.41, 0.30, and 0.74 mg/d/larva, respectively. The attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and differential scanning calorimeter and thermogravimetric (DSC-TGA) analyses demonstrated the changes of functional groups and thermostability in frass compared to plastic feedstocks, indicating the partial oxidation and degradation of plastics. Among the gut digestive enzymes tested, protease showed increased activities in all plastics-fed groups. Gut microbial communities displayed significant relative abundance changes such as increased abundances of Enterococcus in all plastic-fed groups, Citrobacter in PE-fed group, Dysgonomonas and Sphingobacterium in PS-fed group, and Mangrovibacter in PU-fed group. The latter 3 genera were reported for the first time. In summary, the results demonstrated that Z. atratus could efficiently degrade both PS and PU foam plastics, and the plastic degradation was associated with changes of gut microbial communities and digestive enzyme activities.


Asunto(s)
Escarabajos , Microbioma Gastrointestinal , Microbiota , Animales , Biodegradación Ambiental , Larva , Plásticos , Poliestirenos
6.
Artículo en Inglés | MEDLINE | ID: mdl-21420349

RESUMEN

Interactions of the anti-inflammatory drug ketoprofen with calf thymus DNA (ctDNA) in aqueous solution have been studied by multi-spectroscopic method including resonance light scattering (RLS) technique, ultraviolet spectra (UV), (1)H NMR, etc. The characteristics of RLS spectra, the effective factors and optimum conditions of the reaction have been unequivocally investigated. Mechanism investigations have shown that ketoprofen can bind to ctDNA by groove binding and form large particles, which resulted in the enhancement of RLS intensity. In Critic acid-Na(2)HPO(4) buffer (pH=6.5), ketoprofen has a maximum peak 451.5 nm and the RLS intensity is remarkably enhanced by trace amount of ctDNA due to the interaction between ketoprofen and ctDNA. The enhancement of RLS signal is directly proportional to the concentration of ctDNA in the range of 1.20×10(-6)-1.0×10(-5) mol/L, and its detection limit (3σ) is 1.33×10(-9) mol/L. The method is simple, rapid, practical and relatively free from interference generated by coexisting substance, and was applied to the determination of trace amounts of nucleic acid in synthetic samples with satisfactory results.


Asunto(s)
Antiinflamatorios/química , ADN/química , Cetoprofeno/química , Análisis Espectral/métodos , Absorción , Animales , Tampones (Química) , Calibración , Bovinos , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Luz , Espectroscopía de Resonancia Magnética , Desnaturalización de Ácido Nucleico , Dispersión de Radiación , Soluciones , Espectrofotometría Ultravioleta , Factores de Tiempo , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA