Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37745600

RESUMEN

Tumor cells rely on increased glycolytic capacity to promote cell growth and progression. While glycolysis is known to be upregulated in the majority of triple negative (TNBC) or basal-like subtype breast cancers, the mechanism remains unclear. Here, we used integrative genomic analyses to identify a subset of basal-like tumors characterized by increased expression of the oncogenic transcription factor SOX4 and its co-factor the SWI/SNF ATPase SMARCA4. These tumors are defined by unique gene expression programs that correspond with increased tumor proliferation and activation of key metabolic pathways, including glycolysis. Mechanistically, we demonstrate that the SOX4-SMARCA4 complex mediates glycolysis through direct transcriptional regulation of Hexokinase 2 (HK2) and that aberrant HK2 expression and altered glycolytic capacity are required to mediate SOX4-SMARCA4-dependent cell growth. Collectively, we have defined the SOX4-SMARCA4-HK2 signaling axis in basal-like breast tumors and established that this axis promotes metabolic reprogramming which is required to maintain tumor cell growth.

2.
J Clin Invest ; 132(10)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35349482

RESUMEN

Nonalcoholic fatty liver disease (NAFLD), the most common liver disease, has become a silent worldwide pandemic. The incidence of NAFLD correlates with the rise in obesity, type 2 diabetes, and metabolic syndrome. A hallmark featureof NAFLD is excessive hepatic fat accumulation or steatosis, due to dysregulated hepatic fat metabolism, which can progress to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Currently, there are no approved pharmacotherapies to treat this disease. Here, we have found that activation of the kisspeptin 1 receptor (KISS1R) signaling pathway has therapeutic effects in NAFLD. Using high-fat diet-fed mice, we demonstrated that a deletion of hepatic Kiss1r exacerbated hepatic steatosis. In contrast, enhanced stimulation of KISS1R protected against steatosis in wild-type C57BL/6J mice and decreased fibrosis using a diet-induced mouse model of NASH. Mechanistically, we found that hepatic KISS1R signaling activates the master energy regulator, AMPK, to thereby decrease lipogenesis and progression to NASH. In patients with NAFLD and in high-fat diet-fed mice, hepatic KISS1/KISS1R expression and plasma kisspeptin levels were elevated, suggesting a compensatory mechanism to reduce triglyceride synthesis. These findings establish KISS1R as a therapeutic target to treat NASH.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Animales , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Humanos , Kisspeptinas/genética , Hígado/metabolismo , Cirrosis Hepática/patología , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo
3.
Nat Commun ; 12(1): 2259, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859191

RESUMEN

SOD1 is known as the major cytoplasmic superoxide dismutase and an anticancer target. However, the role of SOD1 in cancer is not fully understood. Herein we describe the generation of an inducible Sod1 knockout in KRAS-driven NSCLC mouse model. Sod1 knockout markedly reduces tumor burden in vivo and blocks growth of KRAS mutant NSCLC cells in vitro. Intriguingly, SOD1 is enriched in the nucleus and notably in the nucleolus of NSCLC cells. The nuclear and nucleolar, not cytoplasmic, form of SOD1 is essential for lung cancer cell proliferation. Moreover, SOD1 interacts with PeBoW complex and controls its assembly necessary for pre-60S ribosomal subunit maturation. Mechanistically, SOD1 regulates co-localization of PeBoW with and processing of pre-rRNA, and maturation of cytoplasmic 60S ribosomal subunits in KRAS mutant lung cancer cells. Collectively, our study unravels a nuclear SOD1 function essential for ribosome biogenesis and proliferation in KRAS-driven lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Biogénesis de Organelos , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Superóxido Dismutasa-1/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Pulmón/citología , Pulmón/patología , Neoplasias Pulmonares/genética , Masculino , Ratones , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Proteínas Proto-Oncogénicas p21(ras)/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , Superóxido Dismutasa-1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA