Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 335, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664614

RESUMEN

BACKGROUND: The vivid red, purple, and blue hues that are observed in a variety of plant fruits, flowers, and leaves are produced by anthocyanins, which are naturally occurring pigments produced by a series of biochemical processes occurring inside the plant cells. The purple-stalked Chinese kale, a popular vegetable that contains anthocyanins, has many health benefits but needs to be investigated further to identify the genes involved in the anthocyanin biosynthesis and translocation in this vegetable. RESULTS: In this study, the purple- and green-stalked Chinese kale were examined using integrative transcriptome and metabolome analyses. The content of anthocyanins such as cyanidin-3-O-(6″-O-feruloyl) sophoroside-5-O-glucoside, cyanidin-3,5-O-diglucoside (cyanin), and cyanidin-3-O-(6″-O-p-hydroxybenzoyl) sophoroside-5-O-glucoside were considerably higher in purple-stalked Chinese kale than in its green-stalked relative. RNA-seq analysis indicated that 23 important anthocyanin biosynthesis genes, including 3 PAL, 2 C4H, 3 4CL, 3 CHS, 1 CHI, 1 F3H, 2 FLS, 2 F3'H, 1 DFR, 3 ANS, and 2 UFGT, along with the transcription factor BoMYB114, were significantly differentially expressed between the purple- and green-stalked varieties. Results of analyzing the expression levels of 11 genes involved in anthocyanin production using qRT-PCR further supported our findings. Association analysis between genes and metabolites revealed a strong correlation between BoGSTF12 and anthocyanin. We overexpressed BoGSTF12 in Arabidopsis thaliana tt19, an anthocyanin transport mutant, and this rescued the anthocyanin-loss phenotype in the stem and rosette leaves, indicating BoGSTF12 encodes an anthocyanin transporter that affects the accumulation of anthocyanins. CONCLUSION: This work represents a key step forward in our understanding of the molecular processes underlying anthocyanin production in Chinese kale. Our comprehensive metabolomic and transcriptome analyses provide important insights into the regulatory system that controls anthocyanin production and transport, while providing a foundation for further research to elucidate the physiological importance of the metabolites found in this nutritionally significant vegetable.


Asunto(s)
Antocianinas , Brassica , Perfilación de la Expresión Génica , Metaboloma , Proteínas de Plantas , Antocianinas/metabolismo , Antocianinas/biosíntesis , Brassica/genética , Brassica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
2.
Genes (Basel) ; 15(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275619

RESUMEN

Taro is a plant in the Araceae family, and its leafstalk possesses significant botanical and culinary value owing to its noteworthy medicinal and nutritional attributes. Leafstalk colour is an essential attribute that significantly influences its desirability and appeal to both breeders and consumers. However, limited information is available about the underlying mechanism responsible for the taro plant's colouration. Thus, the purpose of the current study was to elucidate the information on purple leafstalks in taro through comprehensive metabolome and transcriptome analysis. In total, 187 flavonoids, including 10 anthocyanins, were identified. Among the various compounds analysed, it was observed that the concentrations of five anthocyanins (keracyanin chloride (cyanidin 3-O-rutinoside chloride), cyanidin 3-O-glucoside, tulipanin (delphinidin 3-rutinoside chloride), idaein chloride (cyanidin 3-O-galactoside), and cyanidin chloride) were found to be higher in purple taro leafstalk compared to green taro leafstalk. Furthermore, a total of 3330 differentially expressed genes (DEGs) were identified by transcriptome analysis. Subsequently, the correlation network analysis was performed to investigate the relationship between the expression levels of these differentially expressed genes and the content of anthocyanin. There were 18 DEGs encoding nine enzymes detected as the fundamental structural genes contributing to anthocyanin biosynthesis, along with seven transcription factors (3 MYB and 4 bHLH) that may be promising candidate modulators of the anthocyanin biosynthesis process in purple taro leafstalk. The findings of the current investigation not only provide a comprehensive transcriptional code, but also give information on anthocyanin metabolites as well as beneficial insights into the colour mechanism of purple taro leafstalk.


Asunto(s)
Antocianinas , Colocasia , Colocasia/genética , Colocasia/metabolismo , Transcriptoma , Cloruros , Perfilación de la Expresión Génica , Metaboloma/genética
3.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37762252

RESUMEN

Flowering Chinese cabbage (Brassica rapa var. parachinensis) is one of the most popular vegetables in the south of China. As an antioxidant, anthocyanin is an important quality trait in vegetables, and the gene related to anthocyanin biosynthesis in purple flowering Chinese cabbage is also important. In this study, two flowering Chinese cabbage with extreme colors in the stem were used as materials for transcriptome analysis. RNA-seq analysis showed that 6811 differentially expressed genes (DEGs) were identified, including 295 transcription factors. Phenylpropanoid biosynthesis, flavone and flavanol biosynthesis, and flavonoid biosynthesis pathways were found to be significantly enriched in the purple flowering Chinese cabbage. A total of 25 DEGs associated with anthocyanin biosynthesis were found at a higher expression in purple flowering Chinese cabbage than in green flowering Chinese cabbage. Bioinformatics analysis shows that BrMYB114 is a candidate gene for the regulation of anthocyanin biosynthesis, and heterologous expression analysis of BrMYB114 in Nicotiana benthamiana indicates that BrMYB114 functions in anthocyanin biosynthesis. Therefore, our findings provide vital evidence for elucidating the molecular mechanism in the purple stem in flowering Chinese cabbage.

4.
Front Plant Sci ; 14: 1115782, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063196

RESUMEN

Pueraria thomsonii and Pueraria lobata are important medicinal plants with unique chemical compositions that are widely used in traditional Chinese medicine. To compare the nutritional and medicinal profiles of these two species, we analyzed the flavonoid, dietary fiber, total starch, and crude protein contents of one P. lobata and three P. thomsonii varieties using ultra-performance liquid chromatography-tandem mass spectrometry, enzyme weight, acid hydrolysis, and Kjeldahl methods. Furthermore, we used principal component analysis and hierarchical clustering heatmap analysis to separate the data obtained from the P. thomsonii and P. lobata samples. We detected 279 flavonoid compounds in the two Pueraria species, including 90 isoflavones and 78 flavonoids. A large proportion of isoflavones and flavonoids were more abundant in P. lobata than in P. thomsonii. The total starch content was significantly higher in P. thomsonii than in P. lobata. By contrast, the soluble dietary fiber, insoluble dietary fiber, and crude protein contents were substantially lower in P. thomsonii than in P. lobata. Taken together, our results demonstrate that P. lobata is better suited for use as a medicine, whereas P. thomsonii is better suited as an edible food, and provide a theoretical foundation for developing P. thomsonii and P. lobata germplasm resources.

5.
J Sci Food Agric ; 100(4): 1616-1624, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31773731

RESUMEN

BACKGROUND: Brassica oleracea var. alboglabra (Chinese kale) is an important vegetable grown in southern China. This study was aimed at searching for environmentally friendly and affordable approaches to increase the production of medicinally relevant glucosinolates and phenolic compounds in Chinese kale plants. For this purpose, the foliar application of liquiritin at 0 (control), 250, 500 and 750 ppm was tested starting from the four-leaf stage and repeated every two weeks until plants were two months old. RESULTS: Foliar application of liquiritin in Chinese kale plants significantly increased glucosinolates and total phenolic content, in a dose-dependent manner. Compared with control plants, 2.3- and 1.9-fold increases in yields of glucosinolates and total phenolic content, respectively, were corroborated in Chinese kale plants treated with 750 ppm of liquiritin. Along with rises in the content of eight different glucosinolates, liquiritin elicitation effectively increased the concentration of glycosilated and acylated flavonoids and hydroxycinnamic acids. The expression of genes involved in glucosinolate and phenolic biosynthesis was significantly higher in liquiritin-treated plants as compared to controls. CONCLUSIONS: Liquiritin elicitation is a feasible and environmentally friendly practice for increasing the production of medicinally important glucosinolates and phenolic compounds in Chinese kale, which may improve this plant's value as a nutraceutical food. This study also contributes to understanding the molecular mechanisms underlying liquiritin elicitation. This is the first report documenting the use of liquiritin for an elicitation purpose in plants. © 2019 Society of Chemical Industry.


Asunto(s)
Brassica/metabolismo , Producción de Cultivos/métodos , Flavanonas/farmacología , Glucósidos/farmacología , Glucosinolatos/análisis , Fenoles/análisis , Brassica/química , Brassica/efectos de los fármacos , China , Producción de Cultivos/instrumentación , Flavonoides/análisis , Flavonoides/metabolismo , Glucosinolatos/metabolismo , Fenoles/metabolismo , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Verduras/química , Verduras/efectos de los fármacos , Verduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...