Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(17): 7876-7885, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38608259

RESUMEN

Photocatalytic reduction of U(VI) is a promising method for removing uranium containing pollutants. However, using polyoxometalate-based metal-organic frameworks (POMOFs) for photoreduction of U(VI) is rare, and the relevant charge transfer pathway is also not yet clear. In this article, we demonstrate a highly efficient strategy and revealed a clearly electron transfer pathway for the photoreduction of U(VI) with 99% removal efficiency by using a novel POMOF, [Cu(4,4'-bipy)]5·{AsMo4VMo6VIV2VO40(VIVO)[VIVO(H2O)]}·2H2O (1), as catalyst. The POMOF catalyst was constructed by the connection of reduced {AsMo10V4} clusters and Cu(I)-MOF chains through Cu-O coordination bonds, which exhibits a broader and stronger light absorption capacity due to the presence of reduced {AsMo10V4} clusters. Significantly, the transition of electrons from Cu(I)-MOF to {AsMo10V4} clusters (Cu → Mo/V) greatly inhibits the recombination of photogenerated carriers, thereby advancing electron transfer. More importantly, the {AsMo10V4} clusters are not only adsorption sites but also catalytically active sites. This causes the fast transfer of photogenerated electrons from Mo/V to UO22+(Mo/V → O → U) via the surface oxygen atoms. The shorter electron transmission distance between catalytic active sites and UO22+ achieves faster and more effective electron transport. All in all, the highly effective photocatalytic removal of U(VI) using the POMOF as a catalyst is predominantly due to the synergistic interaction between Cu(I)-MOFs and reduced {AsMo10V4} clusters.

2.
Adv Mater ; 36(26): e2309588, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579272

RESUMEN

2D perovskites have greatly improved moisture stability owing to the large organic cations embedded in the inorganic octahedral structure, which also suppresses the ions migration and reduces the dark current. The suppression of ions migration by 2D perovskites effectively suppresses excessive device noise and baseline drift and shows excellent potential in the direct X-ray detection field. In addition, 2D perovskites have gradually emerged with many unique properties, such as anisotropy, tunable bandgap, high photoluminescence quantum yield, and wide range exciton binding energy, which continuously promote the development of 2D perovskites in ionizing radiation detection. This review aims to systematically summarize the advances and progress of 2D halide perovskite semiconductor and scintillator ionizing radiation detectors, including reported alpha (α) particle, beta (ß) particle, neutron, X-ray, and gamma (γ) ray detection. The unique structural features of 2D perovskites and their advantages in X-ray detection are discussed. Development directions are also proposed to overcome the limitations of 2D halide perovskite radiation detectors.

3.
Bioorg Chem ; 145: 107182, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359707

RESUMEN

Gambogenic acid (GNA), a caged xanthone derived from Garcinia hanburyi, exhibits a wide range of anti-cancer properties. The caged skeleton of GNA serves as the fundamental pharmacophore responsible for its antitumor effects. However, limited exploration has focused on the structural modifications of GNA. This study endeavors to diversify the structure of GNA and enhance its anti-cancer efficacy. Sulfoximines, recognized as pivotal motifs in medicinal chemistry due to their outstanding properties, have featured in several anti-cancer drugs undergoing clinical trials. Accordingly, a series of 33 GNA derivatives combined with sulfoximines were synthesized and evaluated for their anti-cancer effects against MIAPaCa2, MDA-MB-231, and A549 cells in vitro. The activity screening led to the identification of compound 12k, which exhibited the most potent anti-cancer effect. Mechanistic studies revealed that 12k primarily induced pyroptosis in MIAPaCa2 and MDA-MB-231 cells by activating the caspase-3/gasdermin E (GSDME) pathway. These findings suggested that 12k is a promising drug candidate in cancer therapy and highlighted the potential of sulfoximines as a valuable functional group in drug discovery.


Asunto(s)
Apoptosis , Piroptosis , Humanos , Xantenos/farmacología , Xantenos/química , Células A549 , Línea Celular Tumoral
4.
Nat Commun ; 15(1): 577, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233400

RESUMEN

Advanced photodetectors with intelligent functions are expected to take an important role in future technology. However, completing complex detection tasks within a limited number of pixels is still challenging. Here, we report a differential perovskite hemispherical photodetector serving as a smart locator for intelligent imaging and location tracking. The high external quantum efficiency (~1000%) and low noise (10-13 A Hz-0.5) of perovskite hemispherical photodetector enable stable and large variations in signal response. Analysing the differential light response of only 8 pixels with the computer algorithm can realize the capability of colorful imaging and a computational spectral resolution of 4.7 nm in a low-cost and lensless device geometry. Through machine learning to mimic the differential current signal under different applied biases, one more dimensional detection information can be recorded, for dynamically tracking the running trajectory of an object in a three-dimensional space or two-dimensional plane with a color classification function.

5.
Nat Commun ; 15(1): 257, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177148

RESUMEN

Sensitive and stable perovskite X-ray detectors are attractive in low-dosage medical examinations. The high sensitivity, tunable chemical compositions, electronic dimensions, and low-cost raw materials make perovskites promising next-generation semiconductors. However, their ionic nature brings serious concerns about their chemical and water stability, limiting their applications in well-established technologies like crystal polishing, micro-processing, photolithography, etc. Herein we report a one-dimensional tryptamine lead iodide perovskite, which is stable in water for several months as the strong cation-π interactions between organic cations. The one-dimensional and two-dimensional tryptamine lead iodide perovskite tablets are switchable through thermal-annealing or water-soaking treatments to relax microstrains. The water-stable and microstrain-free one-dimensional perovskite tablets yield a large sensitivity of 2.5 × 106 µC Gyair-1 cm-2 with the lowest detectable dose rate of 5 nGyair s-1. Microelectrode arrays are realized by surface photolithography to construct high-performance X-ray flat mini-panels with good X-ray imaging capability, and a record spatial resolution of 17.2 lp mm-1 is demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA