Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 10(1): 70, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30819239

RESUMEN

AIM: The objective of this study is to determine if exuberant sympathetic nerve activity is involved in muscle satellite cell differentiation and myoblast fusion. METHODS AND RESULTS: By using immunoassaying and western blot analyses, we found that ß1 and ß2-adrenergic receptors (AdR) were expressed in C2C12 cells. The differentiated satellite cells exhibited an increased expression of ß2-AdR, as compared with the proliferating cells. Continuous exposure of isoprenaline (ISO), a ß-AdR agonist, delayed C2C12 cell differentiation, and myoblast fusion in time- and dose-dependent manner. ISO also increased short myotube numbers while decreasing long myotube numbers, consistent with the greater reduction in MyHC1, MyHC2a, and MyHC2x expression. Moreover, continuous exposure of ISO gradually decreased the ratio of PKA RI/RII, and PKA RI activator efficiently reversed the ISO effect on C2C12 cell differentiation and myoblast fusion while PKA inhibitor H-89 deteriorated the effects. Continuous single-dose ISO increased ß1-AdR expression in C2C12 cells. More importantly, the cells showed enhanced phospho-ERK1/2 levels, resulting in increasing phospho-ß2-AdR levels while decreasing ß2-AdR levels, and the specific effects could be abolished by ERK1/2 inhibitor. Furthermore, continuous exposure of ISO induced FOXO1 nuclear translocation and increased the levels of FOXO1 in nuclear extracts while reducing pAKT, p-p38MAPK, and pFOXO1 levels. Conversely, blockade of ERK1/2 signaling partially abrogated ISO effects on AKT, p38MAPK, and FOXO1signaling, which partially restored C2C12 cell differentiation and myoblast fusion, leading to an increase in the numbers of medium myotube along with the increased expression of MyHC1 and MyHC2a. CONCLUSION: Continuous exposure of ISO impedes satellite cell differentiation and myoblast fusion, at least in part, through PKA-ERK1/2-FOXO1 signaling pathways, which were associated with the reduced ß2-AdR and increased ß1-AdR levels.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 1/farmacología , Diferenciación Celular/efectos de los fármacos , Isoproterenol/farmacología , Mioblastos/efectos de los fármacos , Animales , Fusión Celular , Proliferación Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteína Forkhead Box O1/genética , Regulación del Desarrollo de la Expresión Génica/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Desarrollo de Músculos/efectos de los fármacos , Mioblastos/metabolismo , Cadenas Pesadas de Miosina/genética , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética
2.
Mol Cell Biochem ; 413(1-2): 9-23, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26769665

RESUMEN

VEGF-C is a newly identified proangiogenic protein playing an important role in vascular disease and angiogenesis. However, its role in myocardial ischemia/reperfusion (I/R) injury remains unknown. The objective of this study was to determine the role and mechanism of VEGF-C in myocardial ischemia-reperfusion injury. Rat left ventricle myocardium was injected with recombinant human VEGF-C protein (0.1 or 1.0 µg/kg b.w.) 1 h prior to myocardial ischemia-reperfusion (I/R) injury. 24 h later, the myocardial infarction size, the number of TUNEL-positive cardiomyocytes, the levels of creatine kinase (CK), CK-MB, cardiac troponin, malondialdehyde (MDA) content, and apoptosis protein Bax expression were decreased, while Bcl2 and pAkt expression were increased in VEGF-C-treated myocardium as compared to the saline-treated I/R hearts. VEGF-C also improved the function of I/R-injured hearts. In the H2O2-induced H9c2 cardiomyocytes, which mimicked the I/R injury in vivo, VEGF-C pre-treatment decreased the LDH release and MDA content, blocked H2O2-induced apoptosis by inhibiting the pro-apoptotic protein Bax expression and its translocation to the mitochondrial membrane, and consequently attenuated H2O2-induced decrease of mitochondrial membrane potential and increase of cytochrome c release from mitochondria. Mechanistically, VEGF-C activated Akt signaling pathway via VEGF receptor 2, leading to a blockade of Bax expression and mitochondrial membrane translocation and thus protected cardiomyocyte from H2O2-induced activation of intrinsic apoptotic pathway. VEGF-C exerts its cardiac protection following I/R injury via its anti-apoptotic effect.


Asunto(s)
Cardiotónicos/administración & dosificación , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/citología , Factor C de Crecimiento Endotelial Vascular/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Cardiotónicos/farmacología , Línea Celular , Modelos Animales de Enfermedad , Humanos , Peróxido de Hidrógeno/farmacología , L-Lactato Deshidrogenasa/metabolismo , Malondialdehído/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Factor C de Crecimiento Endotelial Vascular/farmacología
3.
Int J Cardiol ; 183: 221-31, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25679991

RESUMEN

BACKGROUND: The objective of this study was to determine whether vascular endothelial growth factor (VEGF)-A subtypes improve cardiac stem cell (CSC) engraftment and promote CSC-mediated myocardial repair in the infarcted heart. METHODS: CSCs were treated with VEGF receptor (VEGFR) inhibitors, VCAM-1 antibody (VCAM-1-Ab), or PKC-α inhibitor followed by the treatment with VEGF-A. CSC adhesion assays were performed in vitro. In vivo, the PKH26-labeled and VCAM-1-Ab or PKC-α inhibitor pre-treated CSCs were treated with VEGF-A followed by implantation into infarcted rat hearts. The hearts were then collected for measuring CSC engraftment and evaluating cardiac fibrosis and function 3 or 28days after the CSC transplantation. RESULTS: All three VEGF-A subtypes promoted CSC adhesion to extracellular matrix and endothelial cells. VEGF-A-mediated CSC adhesion required VEGFR and PKCα signaling. Importantly, VEGF-A induced VCAM-1, but not ICAM-1 expression in CSCs through PKCα signaling. In vivo, VEGF-A promoted the engraftment of CSCs in infarcted hearts, which was attenuated by PKCα inhibitor or VCAM-1-Ab. Moreover, VEGF-A-mediated CSC engraftment resulted in a reduction in infarct size and fibrosis. Functional studies showed that the transplantation of the VEGF-A-treated CSCs stimulated extensive angiomyogenesis in infarcted hearts as indicated by the expression of cardiac troponin T and von Willebrand factor, leading to an improved performance of left ventricle. Blockade of PKCα signaling or VCAM-1 significantly diminished the beneficial effects of CSCs treated with VEGF-A. CONCLUSION: VEGF-A promotes myocardial repair through, at least in part, enhancing the engraftment of CSCs mediated by PKCα/VCAM-1 pathway.


Asunto(s)
Infarto del Miocardio/terapia , Trasplante de Células Madre/métodos , Células Madre/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Modelos Animales de Enfermedad , Citometría de Flujo/métodos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Proteína Quinasa C-alfa/metabolismo , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Ratas , Ratas Sprague-Dawley , Regeneración/fisiología , Células Madre/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/uso terapéutico
4.
J Cell Biochem ; 113(8): 2704-13, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22441978

RESUMEN

Acetylcholine (ACh) plays an important role in neural and non-neural function, but its role in mesenchymal stem cell (MSC) migration remains to be determined. In the present study, we have found that ACh induces MSC migration via muscarinic acetylcholine receptors (mAChRs). Among several mAChRs, MSCs express mAChR subtype 1 (m1AChR). ACh induces MSC migration via interaction with mAChR1. MEK1/2 inhibitor PD98059 blocks ERK1/2 phosphorylation while partially inhibiting the ACh-induced MSC migration. InsP3Rs inhibitor 2-APB that inhibits MAPK/ERK phosphorylation completely blocks ACh-mediated MSC migration. Interestingly, intracellular Ca(2+) ATPase-specific inhibitor thapsigargin also completely blocks ACh-induced MSC migration through the depletion of intracellular Ca(2+) storage. PKCα or PKCß inhibitor or their siRNAs only partially inhibit ACh-induced MSC migration, but PKC-ζ siRNA completely inhibits ACh-induced MSC migration via blocking ERK1/2 phosphorylation. These results indicate that ACh induces MSC migration via Ca(2+), PKC, and ERK1/2 signal pathways.


Asunto(s)
Acetilcolina/farmacología , Calcio/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Proteína Quinasa C/metabolismo , Animales , Western Blotting , Movimiento Celular/fisiología , Proliferación Celular/efectos de los fármacos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores Muscarínicos/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Cardiovasc Res ; 91(3): 402-11, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21345805

RESUMEN

AIMS: The objective of this study was to investigate whether vascular endothelial growth factor (VEGF) secreted by mesenchymal stem cells (MSC) improves myocardial survival and the engraftment of implanted MSC in infarcted hearts and promotes recruitment of stem cells through paracrine release of myocardial stromal cell-derived factor-1α (SDF-1α). METHODS AND RESULTS: VEGF-expressing MSC ((VEGF)MSC)-conditioned medium enhanced SDF-1α expression in heart slices and H9C2 cardiomyoblast cells via VEGF and the vascular endothelial growth factor receptor (VEGFR). The (VEGF)MSC-conditioned medium markedly promoted cardiac stem cell (CSC) migration at least in part via the SDF-1α/CXCR4 pathway and involved binding to VEGFR-1 and VEGFR-3. In vivo, (VEGF)MSC-stimulated SDF-1α expression in infarcted hearts resulted in massive mobilization and homing of bone marrow stem cells and CSC. Moreover, VEGF-induced SDF-1α guided the exogenously introduced CSC in the atrioventricular groove to migrate to the infarcted area, leading to a reduction in infarct size. Functional studies showed that (VEGF)MSC transplantation stimulated extensive angiomyogenesis in infarcted hearts as indicated by the expression of cardiac troponin T, CD31, and von Willebrand factor and improved the left ventricular performance, whereas blockade of SDF-1α or its receptor by RNAi or antagonist significantly diminished the beneficial effects of (VEGF)MSC. CONCLUSION: Exogenously expressed VEGF promotes myocardial repair at least in part through SDF-1α/CXCR4-mediated recruitment of CSC.


Asunto(s)
Movimiento Celular , Quimiocina CXCL12/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/cirugía , Miocitos Cardíacos/metabolismo , Regeneración , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Células Cultivadas , Quimiocina CXCL12/genética , Medios de Cultivo Condicionados/metabolismo , Modelos Animales de Enfermedad , Humanos , Desarrollo de Músculos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Neovascularización Fisiológica , Comunicación Paracrina , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Receptores CXCR4/metabolismo , Recuperación de la Función , Factores de Tiempo , Transfección , Troponina T/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Función Ventricular Izquierda , Factor de von Willebrand/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA