Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromol Biosci ; : e2400078, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012275

RESUMEN

Surgical site infections (SSIs) related to implants have always been a major challenge for clinical doctors and patients. Clinically, doctors may directly apply antibiotics into the wound to prevent SSIs. However, this strategy is strongly associated with experience of doctors on the amount and the location of antibiotics. Herein, an in situ constructable sol-gel system is developed containing antibiotics during surgical process and validated the efficacy against SSIs in beagles. The system involves chitosan (CS), ß-glycerophosphate (ß-GP) and vancomycin (VAN), which can be adsorbed onto porous hydroxyapatite (HA) and form VAN-CS/ß-GP@HA hydrogel in a short time. The VAN concentration from VAN-CS/ß-GP@HA hydrogel is higher than minimum inhibitory concentration (MIC) against Staphylococcus aureus (S. aureus) at the 21st day in vitro. In an in vivo canine model for the prevention of SSIs in the femoral condyle, VAN-CS/ß-GP@HA exhibits excellent biocompatibility, antimicrobial properties, and promotion of bone healing. In all, the CS/ß-GP instant sol-gel system is able to in situ encapsulate antibiotics and adhere on artificial bone implants during the surgery, effectively preventing SSIs related to implants.

2.
J Neurosci ; 44(8)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38267260

RESUMEN

The inner ear sensory neurons play a pivotal role in auditory processing and balance control. Though significant progresses have been made, the underlying mechanisms controlling the differentiation and survival of the inner ear sensory neurons remain largely unknown. During development, ISL1 and POU4F transcription factors are co-expressed and are required for terminal differentiation, pathfinding, axon outgrowth and the survival of neurons in the central and peripheral nervous systems. However, little is understood about their functional relationship and regulatory mechanism in neural development. Here, we have knocked out Isl1 or Pou4f1 or both in mice of both sexes. In the absence of Isl1, the differentiation of cochleovestibular ganglion (CVG) neurons is disturbed and with that Isl1-deficient CVG neurons display defects in migration and axon pathfinding. Compound deletion of Isl1 and Pou4f1 causes a delay in CVG differentiation and results in a more severe CVG defect with a loss of nearly all of spiral ganglion neurons (SGNs). Moreover, ISL1 and POU4F1 interact directly in developing CVG neurons and act cooperatively as well as independently in regulating the expression of unique sets of CVG-specific genes crucial for CVG development and survival by binding to the cis-regulatory elements including the promoters of Fgf10, Pou4f2, and Epha5 and enhancers of Eya1 and Ntng2 These findings demonstrate that Isl1 and Pou4f1 are indispensable for CVG development and maintenance by acting epistatically to regulate genes essential for CVG development.


Asunto(s)
Oído Interno , Regulación del Desarrollo de la Expresión Génica , Animales , Femenino , Masculino , Ratones , Ganglios/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Células Receptoras Sensoriales/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Cells ; 12(15)2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37566030

RESUMEN

Retinal ganglion cells (RGCs) are the sole output neurons conveying visual stimuli from the retina to the brain, and dysfunction or loss of RGCs is the primary determinant of visual loss in traumatic and degenerative ocular conditions. Currently, there is a lack of RGC-specific Cre mouse lines that serve as invaluable tools for manipulating genes in RGCs and studying the genetic basis of RGC diseases. The RNA-binding protein with multiple splicing (RBPMS) is identified as the specific marker of all RGCs. Here, we report the generation and characterization of a knock-in mouse line in which a P2A-CreERT2 coding sequence is fused in-frame to the C-terminus of endogenous RBPMS, allowing for the co-expression of RBPMS and CreERT2. The inducible Rbpms-CreERT2 mice exhibited a high recombination efficiency in activating the expression of the tdTomato reporter gene in nearly all adult RGCs as well as in differentiated RGCs starting at E13.5. Additionally, both heterozygous and homozygous Rbpms-CreERT2 knock-in mice showed no detectable defect in the retinal structure, visual function, and transcriptome. Together, these results demonstrated that the Rbpms-CreERT2 knock-in mouse can serve as a powerful and highly desired genetic tool for lineage tracing, genetic manipulation, retinal physiology study, and ocular disease modeling in RGCs.


Asunto(s)
Retina , Células Ganglionares de la Retina , Ratones , Animales , Células Ganglionares de la Retina/metabolismo , Retina/metabolismo , Biomarcadores/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
Sci Rep ; 11(1): 15779, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349220

RESUMEN

Haplo-insufficiency of the GATA3 gene causes hypoparathyroidism, sensorineural hearing loss, and renal disease (HDR) syndrome. Previous studies have shown that Gata3 is required for the development of the prosensory domain and spiral ganglion neurons (SGNs) of the mouse cochlea during embryogenesis. However, its role in supporting cells (SCs) after cell fate specification is largely unknown. In this study, we used tamoxifen-inducible Sox2CreERT2 mice to delete Gata3 in SCs of the neonatal mouse cochlea and showed that loss of Gata3 resulted in the proliferation of SCs, including the inner pillar cells (IPCs), inner border cells (IBCs), and lateral greater epithelium ridge (GER). In addition, loss of Gata3 resulted in the down-regulation of p27kip1, a cell cycle inhibitor, in the SCs of Gata3-CKO neonatal cochleae. Chromatin immunoprecipitation analysis revealed that GATA3 directly binds to p27kip1 promoter and could maintain the quiescent state of cochlear SCs by regulating p27kip1 expression. Furthermore, RNA-seq analysis revealed that loss of Gata3 function resulted in the change in the expression of genes essential for the development and function of cochlear SCs, including Tectb, Cyp26b1, Slitrk6, Ano1, and Aqp4.


Asunto(s)
Proliferación Celular/genética , Cóclea/citología , Cóclea/fisiología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo/genética , Factor de Transcripción GATA3/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Animales , Cóclea/metabolismo , Factor de Transcripción GATA3/metabolismo , Ratones , Unión Proteica/genética
5.
Cell Rep ; 32(11): 108144, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937137

RESUMEN

Retinal bipolar cells (BCs) connect with photoreceptors and relay visual information to retinal ganglion cells (RGCs). Retina-specific deletion of Lhx4 in mice results in a visual defect resembling human congenital stationary night blindness. This visual dysfunction results from the absence of rod bipolar cells (RBCs) and the loss of selective rod-connecting cone bipolar cell (CBC) subtypes and AII amacrine cells (ACs). Inactivation of Lhx4 causes the apoptosis of BCs and cell fate switch from some BCs to ACs, whereas Lhx4 overexpression promotes BC genesis. Moreover, Lhx4 positively regulates Lhx3 expression to drive the fate choice of type 2 BCs over the GABAergic ACs. Lhx4 inactivation ablates Bhlhe23 expression, whereas overexpression of Bhlhe23 partially rescues RBC development in the absence of Lhx4. Thus, by acting upstream of Bhlhe23, Prdm8, Fezf2, Lhx3, and other BC genes, Lhx4, together with Isl1, could play essential roles in regulating the subtype-specific development of RBCs and CBCs.


Asunto(s)
Diferenciación Celular , Proteínas con Homeodominio LIM/metabolismo , Células Bipolares de la Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Factores de Transcripción/metabolismo , Envejecimiento/patología , Células Amacrinas/metabolismo , Células Amacrinas/patología , Animales , Apoptosis , Electrorretinografía , Proteínas con Homeodominio LIM/deficiencia , Ratones , Visión Nocturna , Células Bipolares de la Retina/patología , Células Fotorreceptoras Retinianas Conos/patología , Factores de Transcripción/deficiencia , Transcriptoma/genética
6.
Cytotechnology ; 72(3): 407-414, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32219582

RESUMEN

In order to identify genes involved in the development of inner ear hair cells, we investigated the role of the transcription factor Islet-class LIM-homeodomain (LIM-HD) 1 (Isl1) in the development of the mouse prosensory region. Isl1 was deleted using the Pax2-Cre system, and deletion of both alleles was verified using cochlea sections. Changes in the number of prosensory region cells were measured to determine the effect of Isl1 on the development of the mouse prosensory region. In order to test whether Isl1 formed a protein complex with Ldb1 and Gata3, co-immunoprecipitation experiments were performed in HEK293 cells using the Flag-tagged LIM-domain of Isl1, HA-tagged LID of Ldb1 and Myc-tagged C-terminal domain of Gata3. The expression of Gata3, Sox2, Jag1 and P27 proteins in the prosensory region were not affected in Isl1-/- prosensory cells. Thus, Isl1 did not form a protein complex with Gata3 through Ldb1 in the Isl1-/- cells. Our results suggest that Isl1 may be dispensable for the development of the mouse prosensory region.

7.
Genesis ; 57(10): e23328, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31313880

RESUMEN

LHX4 is a LIM-homeodomain transcription factor essential for the development of spinal cord and pituitary gland. Mice with homozygous Lhx4-null mutation suffer early postnatal death from lung defect. In this study, to facilitate the research on Lhx4 function, we designed a targeting construct to generate two novel Lhx4 mouse lines: Lhx4 loxP conditional knockout and Lhx4 tdT reporter knock-in mice. Lhx4 tdT/+ , Lhx4 loxP/+ , and Lhx4 loxP/loxP were viable, fertile, and did not display any gross abnormalities. By breeding Lhx4 loxP line with Cre-expressing mice, the Exon 3 of Lhx4 was efficiently removed, resulting in a shift in the reading frame and the inactivation of Lhx4. The expression of tdTomato knock-in reporter recapitulated the endogenous LHX4 expression and was detected in the retina, spinal cord, pituitary gland, and hindbrain of Lhx4 tdT mice. Thus, Lhx4 tdT and Lhx4 loxP mouse lines provide valuable tools for unraveling the tissue-specific role of Lhx4 at postnatal stages in mice.


Asunto(s)
Genes Reporteros , Proteínas con Homeodominio LIM/genética , Factores de Transcripción/genética , Animales , Técnicas de Sustitución del Gen , Integrasas/genética , Proteínas con Homeodominio LIM/metabolismo , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis Insercional , Factores de Transcripción/metabolismo , Proteína Fluorescente Roja
8.
Genesis ; 54(10): 534-541, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27532212

RESUMEN

Pou4f2 acts as a key node in the comprehensive and step-wise gene regulatory network (GRN) and regulates the development of retinal ganglion cells (RGCs). Accordingly, deletion of Pou4f2 results in RGC axon defects and apoptosis. To investigate the GRN involved in RGC regeneration, we generated a mouse line with a POU4F2-green fluorescent protein (GFP) fusion protein expressed in RGCs. Co-localization of POU4F2 and GFP in the retina and brain of Pou4f2-GFP/+ heterozygote mice was confirmed using immunofluorescence analysis. Compared with those in wild-type mice, the expression patterns of POU4F2 and POU4F1 and the co-expression patterns of ISL1 and POU4F2 were unaffected in Pou4f2-GFP/GFP homozygote mice. Moreover, the quantification of RGCs showed no significant difference between Pou4f2-GFP/GFP homozygote and wild-type mice. These results demonstrated that the development of RGCs in Pou4f2-GFP/GFP homozygote mice was the same as in wild-type mice. Thus, the present Pou4f2-GFP knock-in mouse line is a useful tool for further studies on the differentiation and regeneration of RGCs.


Asunto(s)
Redes Reguladoras de Genes/genética , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Células Ganglionares de la Retina/metabolismo , Factor de Transcripción Brn-3B/genética , Animales , Axones/metabolismo , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Proteínas de Homeodominio/biosíntesis , Ratones , Retina/crecimiento & desarrollo , Retina/metabolismo , Factor de Transcripción Brn-3B/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA