Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Reprod Domest Anim ; 59(5): e14586, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757644

RESUMEN

The current study aimed to explore the molecular mechanism by which the cholecystokinin (CCK)-mediated CCKAR and CCKBR, as well as the molecular mechanisms of CCK-mediated insulin signalling pathway, regulate oestrogen in the granulosa cells. Also, the expression of CCK in ovaries, uterus, hypothalamus and pituitary gland was investigated in Camelus bactrianus. Ovaries, uterus, hypothalamus and pituitary gland were collected from six, three before ovulation (control) and three after ovulation, slaughtered Camelus bactrianus. Ovulation was induced by IM injection of seminal plasma before slaughtering in the ovulated group. The results showed that there were differences in the transcription and protein levels of CCK in various tissues before and after ovulation (p < .05, p < .01). After transfection with p-IRES2-EGFP-CCK, the mRNA and protein levels of CCK, CCKAR, CCKBR and ER in follicular granulosa cells were significantly upregulated (p < .05, p < .01), and the content of E2 was significantly upregulated (p < .01); On the contrary, after transfection with si-CCK, the mRNA and protein levels of CCK, CCKAR, CCKBR and ER in follicular granulosa cells were significantly downregulated (p < .05, p < .01), and the content of E2 was significantly downregulated (p < .01). Regulating CCK can affect the mRNA levels of INS, INSR, IGF and IGF-R. In summary, regulating the expression level of CCK can activate insulin-related signalling pathways by CCKR, thereby regulating the steroidogenic activity of granulosa cells.


Asunto(s)
Colecistoquinina , Células de la Granulosa , Insulina , Transducción de Señal , Animales , Femenino , Células de la Granulosa/metabolismo , Colecistoquinina/metabolismo , Colecistoquinina/genética , Insulina/metabolismo , Ovulación , Útero/metabolismo , Ovario/metabolismo , Hipófisis/metabolismo , Hipotálamo/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética
2.
Antioxidants (Basel) ; 13(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38671899

RESUMEN

After delivery, the death of trophoblast cells can promote the expulsion of the placenta. Ferroptosis, an iron-dependent programmed cell death, is involved in mammalian development. Circular RNAs are associated with placental development; however, it is unclear whether circular RNAs regulate the expulsion of fetal membranes through ferroptosis. The gene expression profiles in the tail vein blood of Holstein cows with normal and retained placentas were investigated using RNA sequencing and a GSE214588 dataset. circAMN1 and SLC39A8 expression was significantly downregulated in the blood of cows with a retained placenta, whereas miR-205_R-1 expression was significantly upregulated. We validated erastin-induced ferroptosis in trophoblast cells. Transfection with si-circAMN1 and miR-205_R-1 mimic reduced intracellular total iron, Fe2+, and glutathione disulfide levels; increased intracellular glutathione levels and glutathione/glutathione disulfide; and enhanced cell viability in these cells. In contrast, transfection with pcDNA3.1 circAMN1 and an miR-205_R-1 inhibitor promoted ferroptosis. As an miR-205_R-1 sponge, circAMN1 regulated the expression of SLC39A8 to control erastin-induced ferroptosis and regulated the proliferation, invasion, and migration of trophoblast cells. Our findings provide a theoretical basis for studying the mechanism by which programmed cell death regulates fetal membrane expulsion and indicate its potential as a therapeutic target for placenta retention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA