Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(12): 8536-8546, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38480482

RESUMEN

Methods to access chiral sulfur(VI) pharmacophores are of interest in medicinal and synthetic chemistry. We report the desymmetrization of unprotected sulfonimidamides via asymmetric acylation with a cinchona-phosphinate catalyst. The desired products are formed in excellent yield and enantioselectivity with no observed bis-acylation. A data-science-driven approach to substrate scope evaluation was coupled to high throughput experimentation (HTE) to facilitate statistical modeling in order to inform mechanistic studies. Reaction kinetics, catalyst structural studies, and density functional theory (DFT) transition state analysis elucidated the turnover-limiting step to be the collapse of the tetrahedral intermediate and provided key insights into the catalyst-substrate structure-activity relationships responsible for the origin of the enantioselectivity. This study offers a reliable method for accessing enantioenriched sulfonimidamides to propel their application as pharmacophores and serves as an example of the mechanistic insight that can be gleaned from integrating data science and traditional physical organic techniques.


Asunto(s)
Alcaloides de Cinchona , Ciencia de los Datos , Estructura Molecular , Estereoisomerismo , Alcaloides de Cinchona/química , Catálisis , Acilación
2.
Chem Sci ; 14(22): 5992-5999, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37293656

RESUMEN

Atropisomeric scaffolds are a common design element found in pharmaceuticals, many deriving from an N-C axis of chirality. The handedness associated with atropisomeric drugs is oftentimes crucial for their efficacy and/or safety. With the increased use of high-throughput screening (HTS) for drug discovery, the need for rapid enantiomeric excess (ee) analysis is needed to keep up with the fast workflow. Here, we describe a circular dichroism (CD) based assay that could be applied to the ee determination of N-C axially chiral triazole derivatives. Analytical samples for CD were prepared from crude mixtures by three sequential steps: liquid-liquid extraction (LLE), a wash-elute, and complexation with Cu(ii) triflate. The initial ee measurement of five samples of atropisomer 2 was conducted by the use of a CD spectropolarimeter with a 6-position cell changer, resulting in errors of less than 1% ee. High-throughput ee determination was performed on a CD plate reader using a 96-well plate. A total of 28 atropisomeric samples (14 for 2 and 14 for 3) were screened for ee. The CD readings were completed in 60 seconds with average absolute errors of ±7.2% and 5.7% ee for 2 and 3, respectively.

3.
J Org Chem ; 88(12): 7815-7820, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-36705994

RESUMEN

The atroposelective synthesis of N-aryl 1,2,4-triazoles was developed. A cyclodehydration reaction was rendered asymmetric with the use of a chiral phosphoric acid catalyst to afford atropisomeric N-aryl 1,2,4-triazoles in up to 91:9 er. Recrystallization of the isolated heterocycle further enriched the atropisomeric ratio of several analogs to 99:1 er or greater. A divergent and substrate-dependent reaction pathway yielding a different heterocyclic product is also disclosed.


Asunto(s)
Triazoles , Catálisis
4.
Nat Commun ; 9(1): 45, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29298975

RESUMEN

Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection. It produces an unusual intracellular infection in which a vegetative form, called the reticulate body (RB), replicates and then converts into an elementary body (EB), which is the infectious form. Here we use quantitative three-dimensional electron microscopy (3D EM) to show that C. trachomatis RBs divide by binary fission and undergo a sixfold reduction in size as the population expands. Conversion only occurs after at least six rounds of replication, and correlates with smaller RB size. These results suggest that RBs only convert into EBs below a size threshold, reached by repeatedly dividing before doubling in size. A stochastic mathematical model shows how replication-dependent RB size reduction produces delayed and asynchronous conversion, which are hallmarks of the Chlamydia developmental cycle. Our findings support a model in which RB size controls the timing of RB-to-EB conversion without the need for an external signal.


Asunto(s)
Diferenciación Celular , Chlamydia trachomatis/crecimiento & desarrollo , Chlamydia trachomatis/citología , Chlamydia trachomatis/ultraestructura , Células HeLa , Humanos , Microscopía Electrónica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...