Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomimetics (Basel) ; 8(7)2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-37999196

RESUMEN

Under the conditions of conservation tillage, the existence of the root-soil complex greatly increases the resistance and energy consumption of stubble-cutting blades, especially in Northeast China. In this research, the corn root-soil complex in Northeast China was selected as the research object. Based on the multi-toothed structure of the leaf-cutting ant's mandibles and the unique bite mode of its mandibles on leaves, a gear-tooth, double-disk, bionic stubble-cutting device (BSCD) was developed by using a combination of power cutting and passive cutting. The effects of rotary speed, tillage depth, and forward speed on the torque and power of the BSCD were analyzed using orthogonal tests, and the results showed that all of the factors had a large influence on the torque and power, in the order of tillage depth > rotary speed > forward speed. The performance of the BSCD and the traditional power straight blade (TPSB) was explored using comparative tests. It was found that the optimal stubble-cutting rate of the BSCD was 97.4%. Compared with the TPSB, the torque of the BSCD was reduced by 15.2-16.4%, and the power was reduced by 9.2-11.3%. The excellent performance of the BSCD was due to the multi-toothed structure of the cutting edge and the cutting mode.

2.
Sensors (Basel) ; 23(19)2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37836893

RESUMEN

Novel and practical low-temperature 3D printing technology composed of a low-temperature 3D printing machine and optimized low-temperature 3D printing parameters was successfully developed. Under a low-temperature environment of 0--20 °C, poly (vinyl alcohol) (PVA) matrix hydrogels including PVA-sodium lignosulphonate (PVA-LS) hydrogel and PVA-sodium carboxymethylcellulose (PVA-CMC) hydrogel exhibited specific low-temperature rheology properties, building theoretical low-temperature 3D printable bases. The self-made low-temperature 3D printing machine realized a machinery foundation for low-temperature 3D printing technology. Combined with ancillary path and strut members, simple and complicated structures were constructed with high precision. Based on self-compiling G-codes of path structures, layered variable-angle structures with high structure strength were also realized. After low-temperature 3D printing of path structures, excellent electrical sensing functions can be constructed on PVA matrix hydrogel surfaces via monoplasmatic silver particles which can be obtained from reduced reactions. Under the premise of maintaining original material function attributes, low-temperature 3D printing technology realized functionalization of path structures. Based on "3D printing first and then functionalization" logic, low-temperature 3D printing technology innovatively combined structure-strength design, 3D printable ability and electrical sensing functions of PVA matrix hydrogels.

3.
Polymers (Basel) ; 15(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37571068

RESUMEN

The novel conductive polyvinylidene fluoride (PVDF) fibrous membrane with high conductivity and sensitivity was successfully prepared via electrostatic spinning and efficient silver reduction technology. Based on the selective dissolution of porogen of polyvinylpyrrolidone (PVP), the porous PVDF fibrous membrane with excellent adsorbability and mechanical strength was obtained, providing a structure base for the preparation of conductive PVDF fibrous membrane with silver nanoparticles (AgNPs-PVDF). The Ag+ in the AgNO3 mixed solution with PVP was absorbed and maintained in the inner parts and surface of the porous structure. After the reducing action of ascorbic acid-mixed solution with PVP, silver nanoparticles were obtained tightly in an original porous PVDF fibrous membrane, realizing the maximum conductivity of 2500 S/m. With combined excellent conductivity and mechanical strength, the AgNPs-PVDF fibrous membrane effectively and sensitively detected strain signals of throat vocalization, elbow, wrist, finger, and knee (gauge factor of 23). The electrospun conductive AgNPs-PVDF combined the characteristics of low resistance, high mechanical strength, and soft breathability, which provided a new and effective preparation method of conductive fibers for practical application in wearable devices.

4.
Microsc Res Tech ; 86(5): 589-599, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36715138

RESUMEN

In this paper, the microstructure characteristics and mechanical properties (including nano-indentation, tensile, and penetration behaviors) of the scales from pinecone fish (Monocentris japonica) were investigated. The M. japonica scales display a unique hierarchical structure and consist of three layers: an outer bone layer with high mineralization, an intermediate bone layer with obvious pore structures, and an inner collagen layer composed of multiple plies of collagen fibers. The hardness and indentation modulus of the three structural layers exhibit gradient changes, and decrease gradually from the outer layer to the inner layer. Tensile tests show that the tensile response and failure modes of the scales are different under dry and hydrated conditions. The dry scales have higher tensile strength (46.35 MPa) and Young's modulus (0.74 GPa), while the hydrated scales exhibit higher ultimate strain (20.18%) and toughness (4.57 MPa). Penetration tests indicate that the scales have a significantly high resistance to penetration, and increase the penetration force by more than six times compared with the descaled skin. Furthermore, the structure-property relationship of the M. japonica scales was discussed. It is found that the hard outer layer and the porous intermediate layer help to disperse the stress, and the soft inner layer containing collagen fiber plies helps to deflect the crack propagation, which are responsible for the excellent mechanical properties of the scales. The outcome of this study can provide a valuable biomimetic design inspiration for lightweight and high-strength composite materials in engineering fields. RESEARCH HIGHLIGHTS: Microstructure characteristics and mechanical properties of the Monocentris japonica scales were investigated. The M. japonica scales can be divided into three layers rather than two layers. The M. japonica scales exhibited high tensile strength and penetration resistance.


Asunto(s)
Fenómenos Mecánicos , Piel , Animales , Resistencia a la Tracción , Colágeno/análisis , Peces
5.
Polymers (Basel) ; 14(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36433165

RESUMEN

Natural fibers and their composites have attracted much attention due to the growing energy crisis and environmental awareness. In this work, a natural lignocellulosic fiber was extracted from cow dung waste and its potential use as reinforcing material in resin-based polymer composites was evaluated. For this purpose, cow dung fiber-reinforced composites (CDFC) were fabricated, and their mechanical and morphological properties were systematically investigated and compared with corn stalk fiber composites (CSFC) and sisal fiber composites (SFC). The results showed that the addition of cow dung fibers reduced the density of the polymer composites, increased the water absorption, and enhanced the impact strength and shear strength. The highest impact and shear strengths were obtained at 6 wt.% and 9 wt.% of fiber loading, respectively, which increased by 23.8% and 34.6% compared to the composite without the fibers. Further comparisons revealed that at the same fiber addition level, the CDFC exhibited better mechanical properties than the CSFC; notably, the CDFC-3 (adding 3 wt.% of fiber loading) had an impact strength closer to the SFC-3. Furthermore, an SEM analysis suggested that the cow dung fibers exhibited a rough and crinkly surface with more node structures, and presented good interfacial bonding with the composite matrix. This work revealed that cow dung fibers are a promising candidate as reinforcement for resin-based polymer composites, which promotes an alternative application for cow dung waste resources in the automotive components field.

6.
Materials (Basel) ; 14(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34576632

RESUMEN

In this paper, we aim to evaluate the tribological, mechanical, and morphological performance of resin-based friction composites reinforced by sisal fibers with different shapes, namely helical, undulated, and straight shapes. The experimental results show that the shape of the sisal fibers exerts a significant effect on the impact property of the composite materials but no obvious influence on the density and hardness. The friction composite containing the helical-shaped sisal fibers exhibits the best overall tribological behaviors, with a relatively low fade (9.26%), high recovery (98.65%), and good wear resistance (2.061 × 10-7 cm3∙N-1∙m-1) compared with the other two composites containing undulated-shaped fibers and straight-shaped fibers. The impact fracture surfaces and worn surfaces of the composite materials were inspected by scanning electron microscopy, and we demonstrate that adding helical-shaped sisal fibers into the polymer composites provides an enhanced fiber-matrix interface adhesion condition and reduces the extent of fiber debonding and pullout, effectively facilitating the presence of more secondary plateaus on the friction surface, which are responsible for the enhanced tribological and mechanical properties. The outcome of this study reveals that sisal fibers with a helical shape could be a promising candidate as a reinforcement material for resin-based brake friction composite applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...