Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 15(11): 2283-2295, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38780450

RESUMEN

Oxidative stress and neuroinflammation in the aging brain are correlated with the development of neurodegenerative diseases, such as Alzheimer's disease (AD). The blood-brain barrier (BBB) poses a significant challenge to the effective delivery of therapeutics for AD. Prior research has demonstrated that menthol (Men) can augment the permeability of the BBB. Consequently, in the current study, we modified Men on the surface of liposomes to construct menthol-modified quercetin liposomes (Men-Qu-Lips), designed to cross the BBB and enhance quercetin (Qu) concentration in the brain for improved therapeutic efficacy. The experimental findings indicate that Men-Qu-Lips exhibited good encapsulation efficiency and stability, successfully crossed the BBB, improved oxidative stress and neuroinflammation in the brains of aged mice, protected neurons, and enhanced their learning and memory abilities.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Encéfalo , Liposomas , Mentol , Quercetina , Quercetina/farmacología , Quercetina/administración & dosificación , Quercetina/química , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ratones , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Mentol/farmacología , Mentol/administración & dosificación , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Masculino , Envejecimiento/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL
2.
Drug Dev Ind Pharm ; 50(2): 135-149, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38235554

RESUMEN

OBJECTIVE: Glioma is the most common and deadly primary malignant tumor in adults. Treatment outcomes are ungratified due to the presence of blood-brain barrier (BBB), glioma stem cells (GSCs) and multidrug resistance (MDR). Docetaxel (DTX) is considered as a potential drug for the treatment of brain tumor, but its effectiveness is limited by its low bioavailability and drug resistance. Tetrandrine (TET) reverses the resistance of tumor cells to chemotherapy drugs. Borneol (BO) modified in micelles has been shown to promote DTX plus TET to cross the BBB, allowing the drug to better act on tumors. Therefore, we constructed BO-modified DTX plus TET micelles to inhibit chemotherapeutic drug resistance. SIGNIFICANCE: Provide a new treatment method for drug-resistant brain gliomas. METHODS: In this study, BO-modified DTX plus TET micelles were prepared by thin film dispersion method, their physicochemical properties were characterized. Its targeting ability was investigated. The therapeutic effect on GSCs was investigated by in vivo and in vitro experiments. RESULTS: The BO-modified DTX plus TET micelles were successfully constructed by thin film dispersion method, and the micelles showed good stability. The results showed that targeting micelles increased bEnd.3 uptake and helped drugs cross the BBB in vitro. And we also found that targeting micelles could inhibit cell proliferation, promote cell apoptosis and inhibit the expression of drug-resistant protein, thus provide a new treatment method for GSCs in vitro and in vivo. CONCLUSIONS: BO-modified DTX plus TET micelles may provide a new treatment method for drug-resistant brain gliomas.


Asunto(s)
Antineoplásicos , Bencilisoquinolinas , Canfanos , Glioma , Humanos , Docetaxel , Micelas , Glioma/tratamiento farmacológico , Glioma/patología , Encéfalo , Línea Celular Tumoral
3.
Drug Dev Ind Pharm ; 49(9): 559-571, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37649422

RESUMEN

OBJECTIVE: Alzheimer's disease (AD) is a neurodegenerative disease that is associated with aging and is influenced by both genetic and environmental factors. Several studies and clinical trials have demonstrated that resveratrol (Res) and salidroside (Sal) are not only biologically safe but also influence AD biomarker trajectories. However, their clinical applications have been quite limited due to poor specificity, low solubility, and insufficient blood-brain barrier (BBB) penetration. Therefore, we developed a nano-drug delivery system in which Res and Sal were encapsulated in liposomes, which were surface-modified with ApoE (ApoE-Res/Sal-Lips) to compensate for these deficiencies. METHOD: In this study, ApoE-Res/Sal-Lips were prepared using a standard thin-film hydration method for liposomes. Then, cellular uptake of the loaded liposomes was assessed in vitro using fluorescent staining assays. A BBB model was constructed to investigate the capacity of the liposomes to cross the BBB in vitro, and the ability of liposomes to target the brain was observed by in vivo imaging. In addition, the neuroprotective effects of the different liposome formulations in APP/PS-1 mice were evaluated by measuring the changes in levels of oxidative, anti-inflammatory, and anti-apoptotic factors in the mice brains. RESULTS: In vitro, ApoE-Res/Sal-Lips increased the uptake of Res and Sal by bEnd.3 and N2a cells, enhanced BBB penetration, and improved transport efficiency. In vivo, the ApoE-Res/Sal-Lips were found to alleviate AD pathological symptoms, reduce learning and memory impairments, and improve brain function. CONCLUSION: ApoE-Res/Sal-Lips provide a new method for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Glucósidos , Enfermedades Neurodegenerativas , Fenoles , Ratones , Animales , Liposomas/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Resveratrol/farmacología , Barrera Hematoencefálica , Apolipoproteínas E/farmacología , Apolipoproteínas E/uso terapéutico
4.
Drug Deliv ; 29(1): 1648-1662, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35616263

RESUMEN

The blood-brain barrier (BBB) is a protective barrier for brain safety, but it is also a major obstacle to the delivery of drugs to the cerebral parenchyma such as the hippocampus, hindering the treatment of central nervous system diseases such as Alzheimer's disease (AD). In this work, an anti-AD brain-targeted nanodrug delivery system by co-loading icariin (ICA) and tanshinone IIA (TSIIA) into Aniopep-2-modified long-circulating (Ang2-ICA/TSIIA) liposomes was developed. Low-density lipoprotein receptor-related protein-1 (LRP1) was a receptor overexpressed on the BBB. Angiopep-2, a specific ligand of LRP1, exhibited a high binding efficiency with LRP1. Additionally, ICA and TSIIA, drugs with neuroprotective effects are loaded into the liposomes, so that the liposomes not only have an effective BBB penetration effect, but also have a potential anti-AD effect. The prepared Ang2-ICA/TSIIA liposomes appeared narrow dispersity and good stability with a diameter of 110 nm, and a round morphology. Cell uptake observations, BBB models in vitro, and imaging analysis in vivo showed that Ang2-ICA/TSIIA liposomes not only penetrate the BBB through endocytosis, but also accumulate in N2a cells or brain tissue. The pharmacodynamic analysis in vivo demonstrated that Ang2-ICA/TSIIA liposomes could improve AD-like pathological features in APP/PS1 mice, including inhibiting neuroinflammation and oxidative stress, reducing apoptosis, protecting neurons, and improving cognitive function. Therefore, Ang2-ICA/TSIIA liposomes are considered a potentially effective therapeutic strategy for AD.


Asunto(s)
Enfermedad de Alzheimer , Liposomas , Abietanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Flavonoides , Liposomas/metabolismo , Ratones
5.
Biomater Sci ; 10(2): 499-513, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-34904598

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial joint hyperplasia, joint inflammation, cartilage erosion and bone destruction. Macrophages play an essential role in the pathogenesis of RA, and folate receptor ß (FR-ß) is highly expressed on the surface of activated synovial macrophages in RA patients. Triptolide (TP) has anti-inflammatory properties, and it can protect the cartilage matrix, but its clinical application has been limited due to poor solubility, low bioavailability and systemic toxicity. Therefore, we constructed folate-modified triptolide liposomes (FA-TP-Lips) to target macrophages, thereby treating RA in a safe and effective way. The experiments indicated that FA-TP-Lips had properties of small particle size, uniform particle size distribution, high drug encapsulation and long circulation. Furthermore, FA-TP-Lips showed reduced cytotoxicity, increased cellular uptake and significant anti-inflammatory effects in vitro. It also inhibited osteoclastogenesis. In vivo experiments revealed that liposomes could prolong the circulation of TP in the body, as well as exhibit significant cartilage-protective and anti-inflammatory effects with lower toxicity compared with the free TP group, thereby providing a promising new approach for the treatment of RA.


Asunto(s)
Artritis Reumatoide , Liposomas , Artritis Reumatoide/tratamiento farmacológico , Diterpenos , Compuestos Epoxi , Ácido Fólico , Humanos , Macrófagos , Fenantrenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...