Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 36(21)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38364264

RESUMEN

Antiferromagnetic (AFM) materials have potential advantages for spintronics due to their robustness, ultrafast dynamics, and magnetotransport effects. However, the missing spontaneous polarization and magnetization hinders the efficient utilization of electronic spin in these AFM materials. Here, we propose a simple way to produce spin-splitting in AFM materials by making the magnetic atoms with opposite spin polarization locating in the different environment (surrounding atomic arrangement), which does not necessarily require the presence of spin-orbital coupling. We confirm our proposal by four different types of two-dimensional AFM materials within the first-principles calculations. Our works provide an intuitional design principle to find or produce spin-splitting in AFM materials.

2.
Phys Chem Chem Phys ; 26(4): 3159-3167, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38190261

RESUMEN

A superior piezoelectric coefficient and diminutive lattice thermal conductivity are advantageous for the application of a two-dimensional semiconductor in piezoelectric and thermoelectric devices, whereas an imperfect piezoelectric coefficient and large lattice thermal conductivity limit the practical application of the material. In this study, we investigate how the equibiaxial strain regulates the electronic structure, and mechanical, piezoelectric, and thermal transport properties. Tensile strain can deduce the bandgap of the monolayer CrX2 (X = S, Se, Te), whereas compressive strain has an opposite effect. Additionally, the transition from a semiconductor to a metal state and the transition between direct and indirect band gaps will occur at appropriate strain values, so the electronic structure can be effectively regulated. The reason is the different sensitivities of the energy corresponding to K and Γ on the valence band to the strain due to the changes in different orbital overlaps. The tensile strain can effectively improve the flexibility of monolayers CrX2, which provides a possibility for the application of flexible electronic devices. Furthermore, the tensile strain can improve the piezoelectric strain coefficient of monolayers CrX2. Using Slacks formulation, we calculate the lattice thermal conductivity, and the tensile biaxial strain can reduce the lattice thermal conductivity. Our research provides a strategy to enhance the piezoelectric and flexible electronic applications and decrease the lattice thermal conductivity, which can benefit the thermoelectric applications.

3.
Phys Chem Chem Phys ; 25(44): 30269-30275, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37929879

RESUMEN

Two-dimensional (2D) half-metallic materials are highly desirable for nanoscale spintronic applications. Here, we propose a new mechanism that can achieve half-metallicity in 2D ferromagnetic (FM) materials with two-layer magnetic atoms by electric field tuning. We use a concrete example of an experimentally synthesized CrSBr monolayer to illustrate our proposal through first-principles calculations. It is found that half-metallic properties can be achieved in CrSBr within an appropriate electric field range, and the corresponding amplitude of electric field intensity can be realized experimentally. Janus monolayer Cr2S2BrI is constructed, which possesses a built-in electric field due to broken horizontal mirror symmetry. However, Cr2S2BrI without and with an applied external electric field is always a FM semiconductor. A possible memory device is also proposed based on the CrSBr monolayer. Our work will stimulate the application of 2D FM CrSBr in future spintronic nanodevices.

4.
Phys Chem Chem Phys ; 25(28): 18577-18583, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37409570

RESUMEN

Electronic correlation combined with spin-orbit coupling (SOC) may have a significant impact on the physical properties of two-dimensional (2D) transition metal magnetic compounds. Moreover, magnetic anisotropy (MA) is very important in determining magnetic, ferrovalley (FV) and topological properties of these 2D systems. Based on a density-functional theory (DFT) + U approach, it is found that the electronic correlation can induce topological phase transition in some special 2D valleytronic materials (for example FeCl2 and VSi2P4) with out-of-plane MA, and a novel valley-polarized quantum anomalous Hall insulator (VQAHI) and half-valley-metal (HVM) can be produced. These topological phase transitions are connected with a sign-reversible Berry curvature and band inversion between dxy/dx2-y2 and dz2 orbitals. However, for in-plane MA, the FV and nontrivial topological properties will be suppressed. For a given material, the correlation strength is fixed, but these novel electronic states and topological phase transitions can still be exhibited by strain in practice. The mini-review sheds light on the possible role of correlation effects in some special 2D valleytronic materials.

5.
J Phys Condens Matter ; 35(40)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37364584

RESUMEN

Coexistence of ferromagnetism, piezoelectricity and valley in two-dimensional (2D) materials is crucial to advance multifunctional electronic technologies. Here, Janus ScXY (X≠Y = Cl, Br and I) monolayers are predicted to be piezoelectric ferromagnetic semiconductors with dynamical, mechanical and thermal stabilities. They all show an in-plane easy axis of magnetization by calculating magnetic anisotropy energy (MAE) including magnetocrystalline anisotropy energy and magnetic shape anisotropy energy. The MAE results show that they intrinsically have no spontaneous valley polarization. The predicted piezoelectric strain coefficientsd11andd31(absolute values) are higher than ones of most 2D materials. Moreover, thed31(absolute value) of ScClI reaches up to 1.14 pm V-1, which is highly desirable for ultrathin piezoelectric device application. To obtain spontaneous valley polarization, charge doping are explored to tune the direction of magnetization of ScXY. By appropriate hole doping, their easy magnetization axis can change from in-plane to out-of-plane, resulting in spontaneous valley polarization. Taking ScBrI with 0.20 holes per f.u. as an example, under the action of an in-plane electric field, the hole carriers of K valley turn towards one edge of the sample, which will produce anomalous valley Hall effect, and the hole carriers of Γ valley move in a straight line. These findings could pave the way for designing piezoelectric and valleytronic devices.

6.
Phys Chem Chem Phys ; 25(26): 17360-17369, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37347175

RESUMEN

Constructing van der Waals (vdW) heterostructures provides an effective and feasible method for 2D materials to improve their properties and extend their possible applications. Using first-principles calculations, we explored the atomic and electronic structures of Janus In2SeX (X = S or Te) and revealed the existence of a vertical internal intrinsic electric field in these Janus monolayers. Then, we stacked the pristine InSe and Janus In2SeX (X = S or Te) with black phosphorus (BP) vertically to construct vdW heterostructures with a mismatch of less than 5% and systematically investigated their interface atomic structures and possible applications in photovoltaics. The calculation results reveal that the constructed vdW heterostructures can be synthesized experimentally, and the type-II band alignment can be found in all vdW heterostructures, which is independent of the internal electric field of Janus monolayers, the built-in dipole at the interface between two domains, and the number of layers. In addition, the vdW heterostructures show stronger light absorption compared to monolayer individuals, and the type-II band alignment can help the photo-excited carriers to separate and achieve an excellent photovoltaic power conversion efficiency of up to about 21% in these heterostructures. These extraordinary results suggest that these vdW heterostructures have great potential for more efficient solar photovoltaic applications.

7.
Phys Chem Chem Phys ; 25(15): 10827-10835, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37013675

RESUMEN

In this paper, the electronic band structure, Rashba effect, hexagonal warping, and piezoelectricity of Janus group-VIA binary monolayers STe2, SeTe2, and Se2Te are investigated based on density functional theory (DFT). Due to the inversion asymmetry and spin-orbit coupling (SOC), the STe2, SeTe2 and Se2Te monolayers exhibit large intrinsic Rashba spin splitting (RSS) at the Γ point with the Rashba parameters 0.19 eV Å, 0.39 eV Å, and 0.34 eV Å, respectively. Interestingly, based on the k·p model via symmetry analysis, the hexagonal warping effect and a nonzero spin projection component Sz arise at a larger constant energy surface due to nonlinear k3 terms. Then, the warping strength λ was obtained by fitting the calculated energy band data. Additionally, in-plane biaxial strain can significantly modulate the band structure and RSS. Furthermore, all these systems exhibit large in-plane and out-of-plane piezoelectricity due to inversion and mirror asymmetry. The calculated piezoelectric coefficients d11 and d31 are about 15-40 pm V-1 and 0.2-0.4 pm V-1, respectively, which are superior to those of most reported Janus monolayers. Because of the large RSS and piezoelectricity, the studied materials have great potential for spintronic and piezoelectric applications.

8.
Phys Chem Chem Phys ; 25(7): 5663-5672, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36734472

RESUMEN

The van der Waals integration can help 2D materials modulate their properties and provide more opportunities for 2D materials in the next-generation high-performance optoelectronic devices. Using first-principles calculations, we explored the atomic and electronic structures of 2D pristine and Janus group-IV monochalcogenides and found the internal vertical electric field at Janus group-IV monochalcogenides. Then, we constructed vdW heterostructures with pristine and Janus group-IV monochalcogenides monolayers as building blocks and explored their atomic structures and band alignments. Our results demonstrate that these vdW heterostructures can be synthesized experimentally, and the surface termination of the Janus monolayer at the interface can significantly help the heterostructure realize the transition from type I to type II due to the intrinsic electric field. Moreover, we found eight vdW heterostructures with a mismatch of less than 5% exhibiting type II band alignment with charge densities of VBM and CBM mainly localized at different domains of heterostructures, and excellent power conversion efficiency (∼19%) in photovoltaics are also predicted for these heterostructures with type II band alignment. Our results not only give an idea to use the Janus monolayer as building blocks to construct vdW heterostructures and modulate their band alignment but also provide a guide to the experimental researcher to design more efficient photovoltaic devices with Janus group-IV monochalcogenides.

9.
Phys Chem Chem Phys ; 25(3): 2274-2281, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36597784

RESUMEN

Strong structural asymmetry is actively explored in two-dimensional (2D) materials, because it can give rise to many interesting physical properties. Motivated by the recent synthesis of monolayer Si2Te2, we explored a family of 2D materials, named Janus Si dichalcogenides (JSD), which parallel the Janus transition metal dichalcogenides and exhibit even stronger inversion asymmetry. Using first-principles calculations, we show that their strong structural asymmetry leads to a pronounced intrinsic polar field, sizable spin splitting, and large piezoelectric response. The spin splitting involves an out-of-plane spin component, which is beyond the linear Rashba model. The piezoelectric tensor has a large value in both in-plane d11 coefficient and out-of-plane d31 coefficient, making monolayer JSDs distinct among existing 2D piezoelectric materials. In addition, we find interesting strain-induced phase transitions in these materials. Particularly, there are multiple valleys that compete for the conduction band minimum, which will lead to notable changes in the optical and transport properties under strain. Our work reveals a new family of Si based 2D materials, which could find promising applications in spintronic and piezoelectric devices.

10.
Phys Chem Chem Phys ; 25(1): 796-805, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36510741

RESUMEN

Coexistence of intrinsic ferromagnetism and piezoelectricity, namely piezoelectric ferromagnetism (PFM), is crucial to advance multifunctional spintronic technologies. In this work, we demonstrate that Janus monolayer YBrI is a PFM, which is dynamically, mechanically and thermally stable. The electronic correlation effects on the physical properties of YBrI are investigated by using generalized gradient approximation plus U (GGA+U) approach. For out-of-plane magnetic anisotropy, YBrI is a ferrovalley (FV) material, and its valley splitting is larger than 82 meV within the considered U range. The anomalous valley Hall effect (AVHE) can be achieved under an in-plane electric field. However, for in-plane magnetic anisotropy, YBrI is a common ferromagnetic (FM) semiconductor. When considering intrinsic magnetic anisotropy, the easy axis of YBrI is always in-plane, and its magnetic anisotropy energy (MAE) varies from 0.309 meV to 0.237 meV (U = 0.0 eV to 3.0 eV). However, the magnetization can be adjusted from the in-plane to out-of-plane direction by an external magnetic field, and then lead to the occurrence of valley polarization. Moreover, the missing centrosymmetry along with broken mirror symmetry results in both in-plane and out-of-plane piezoelectricity in the YBrI monolayer. At a typical U = 2.0 eV, the piezoelectric strain coefficient d11 is predicted to be -5.61 pm V-1, which is higher than or comparable with the ones of other known two-dimensional (2D) materials. The electronic and piezoelectric properties of YBrI can be effectively tuned by applying biaxial strain. For example, tensile strain can enhance valley splitting and d11 (absolute value). The predicted magnetic transition temperature of YBrI is higher than those of experimentally synthesized 2D FM materials CrI3 and Cr2Ge2Te6. Our findings of these distinctive properties could pave the way for designing multifunctional spintronic devices, and bring forward a new perspective for constructing 2D materials.

11.
Phys Chem Chem Phys ; 24(41): 25287-25297, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36226481

RESUMEN

Direct Z-scheme water-splitting is a promising route to enhancing the photocatalytic performance due to the effective separation of photogenerated carriers while simultaneously preserving the strong oxidation activity of holes and reduction activity of electrons. In this work, the MoSSe/XY2 (X = Hf, Zr; S, Se) heterostructures (HSs) with different contacts are proposed for Z-scheme photocatalytic water-spitting by first principles calculation. The separation of photogenerated carriers for HfSe2/SMoSe and ZrSe2/SMoSe HSs is limited by the type-I band alignment, while the hydrogen production ability of HfSe2/SeMoS and ZrSe2/SeMoS HSs is limited by the lower conduction band edge positions relative to the water reduction potential. The HfS2/SMoSe, HfS2/SeMoS, ZrS2/SMoSe, and ZrS2/SeMoS HSs are direct Z-scheme water-splitting photocatalysts with the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) occurring at the Hf(Zr)S2 layer and MoSSe layer, respectively. More excitingly, the S (or Se) vacancies effectively lower the HER overpotentials. Besides, the solar-to-hydrogen efficiencies are 6.1%, 5.9%, 6.4%, and 6.3% for HfS2/SMoSe, HfS2/SeMoS, ZrS2/SMoSe, and ZrS2/SeMoS HSs, respectively. This work paves the way for designing highly efficient overall water-splitting photocatalysts using 2D materials.

12.
J Phys Condens Matter ; 34(50)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36265474

RESUMEN

Two-dimensional (2D) ferromagnets have been a fascinating subject of research, and magnetic anisotropy (MA) is indispensable for stabilizing the 2D magnetic order. Here, we investigate magnetic anisotropy energy (MAE), magnetic and electronic properties ofVSi2P4by using the generalized gradient approximation plusUapproach. For largeU, the magnetic shape anisotropy (MSA) energy has a more pronounced contribution to the MAE, which can overcome the magnetocrystalline anisotropy (MCA) energy to evince an easy-plane. For fixed out-of-plane MA, monolayerVSi2P4undergoes ferrovalley (FV), half-valley-metal (HVM), valley-polarized quantum anomalous Hall insulator (VQAHI), HVM and FV states with increasingU. However, for assumptive in-plane MA, there is no special quantum anomalous Hall (QAH) state and spontaneous valley polarization within consideredUrange. According to the MAE and electronic structure with fixed out-of-plane or in-plane MA, the intrinsic phase diagram shows common magnetic semiconductor, FV and VQAHI in monolayerVSi2P4. At representativeU = 3 eV widely used in references,VSi2P4can be regarded as a 2D-XYmagnet, not Ising-like 2D long-range order magnets predicted in previous works with only considering MCA energy. Our findings shed light on importance of MSA in determining magnetic and electronic properties of monolayerVSi2P4.

13.
Phys Chem Chem Phys ; 24(33): 19965-19974, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35971867

RESUMEN

The combination of piezoelectricity with a nontrivial topological insulating phase in two-dimensional (2D) systems, namely piezoelectric quantum spin Hall insulators (PQSHI), is intriguing for exploring novel topological states toward the development of high-speed and dissipationless electronic devices. In this work, we predict a PQSHI Janus monolayer VCClBr constructed from VCCl2, which is dynamically, mechanically and thermally stable. In the absence of spin orbital coupling (SOC), VCClBr is a narrow gap semiconductor with a gap value of 57 meV, which is different from Dirac semimetal VCCl2. The gap of VCClBr is due to a built-in electric field caused by asymmetrical upper and lower atomic layers, which is further confirmed by the external-electric-field induced gap in VCCl2. When including SOC, the gap of VCClBr is increased to 76 meV, which is larger than the thermal energy of room temperature (25 meV). The VCClBr is a 2D topological insulator (TI), which is confirmed by Z2 topological invariant and nontrivial one-dimensional edge states. It is proved that the nontrivial topological properties of VCClBr are robust against strain (biaxial and uniaxial cases) and external electric fields. Due to broken horizontal mirror symmetry, only an out-of-plane piezoelectric response can be observed, when a biaxial or uniaxial in-plane strain is applied. The predicted piezoelectric strain coefficients d31 and d32 are -0.425 pm V-1 and -0.219 pm V-1, respectively, and they are higher than or compared with those of many 2D materials. Finally, Janus monolayer VCFBr and VCFCl (dynamically unstable) are also constructed, and they are still PQSHIs. Moreover, the d31 and d32 of VCFBr and VCFCl are higher than those of VCClBr, and the d31 (absolute value) of VCFBr is larger than one. According to out-of-plane piezoelectric coefficients of VCXY (X ≠ Y = F, Cl and Br), CrX1.5Y1.5 (X = F, Cl and Br; Y = I) and NiXY (X ≠ Y = Cl, Br and I), it is concluded that the size of the out-of-plane piezoelectric coefficient has a positive relation with the electronegativity difference of X and Y atoms. Our studies enrich the diversity of Janus 2D materials, and open a new avenue in the search for PQSHI with a large out-of-plane piezoelectric response, which provides a potential platform in nanoelectronics.

14.
J Phys Condens Matter ; 34(23)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35134787

RESUMEN

Achieving combination of spin and valley polarized states with topological insulating phase is pregnant to promote the fantastic integration of topological physics, spintronics and valleytronics. In this work, a spin-valley-coupled quantum spin Hall insulator (svc-QSHI) is predicted in Janus monolayer CSb1.5Bi1.5with dynamic, mechanical and thermal stabilities. Calculated results show that the CSb1.5Bi1.5is a direct band gap semiconductor with and without spin-orbit coupling, and the conduction-band minimum and valence-band maximum are at valley point. The inequivalent valleys have opposite Berry curvature and spin moment, which can produce a spin-valley Hall effect. In the center of Brillouin zone, a Rashba-type spin splitting can be observed due to missing horizontal mirror symmetry. The topological characteristic of CSb1.5Bi1.5is confirmed by theZ2invariant and topological protected conducting helical edge states. Moreover, the CSb1.5Bi1.5shows unique Rashba-splitting edge states. Both energy band gap and spin-splitting at the valley point are larger than the thermal energy of room temperature (25 meV) with generalized gradient approximation level, which is very important at room temperature for device applications. It is proved that the spin-valley-coupling and nontrivial quantum spin Hall state are robust again biaxial strain. Our work may provide a new platform to achieve integration of topological physics, spintronics and valleytronics.

15.
Phys Chem Chem Phys ; 24(2): 715-723, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34935017

RESUMEN

The valley degree of freedom of carriers in crystals is useful to process information and perform logic operations, and it is a key factor for valley application to realize valley polarization. Here, we propose a model that the valley polarization transition at different valley points (-K and K points) is produced by biaxial strain. Using first-principles calculations, we illustrate our idea with a concrete example of a Janus GdClF monolayer. The predicted GdClF monolayer is dynamically, mechanically and thermally stable, and is a ferromagnetic (FM) semiconductor with perpendicular magnetic anisotropy (PMA), valence band maximum (VBM) at valley points and a high Curie temperature (TC). Due to its intrinsic ferromagnetism and spin-orbit coupling (SOC), a spontaneous valley polarization will be induced, but the valley splitting is only -3.1 meV, which provides an opportunity to achieve valley polarization transition at different valley points by strain. In the considered strain range (a/a0: 0.94-1.06), the strained GdClF monolayer always has an energy bandgap, strong FM coupling and PMA. The compressive strain is in favour of -K valley polarization, while the tensile strain is favorable for K valley polarization. The corresponding valley splittings at 0.96 and 1.04 strains are -44.5 meV and 29.4 meV, respectively, which are higher than the thermal energy at room temperature (25 meV). Due to its special Janus structure, both in-plane and out-of-plane piezoelectric polarizations can be observed. It is found that the direction of in-plane piezoelectric polarization can be overturned by strain, and the d11 values at 0.96 and 1.04 strains are -1.37 pm V-1 and 2.05 pm V-1, respectively. Our work paves the way to design ferrovalley materials for application in multifunctional valleytronic and piezoelectric devices by strain.

16.
Phys Chem Chem Phys ; 23(45): 25994-26003, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34783808

RESUMEN

To easily synthesize a piezoelectric quantum anomalous Hall insulator (PQAHI), the Janus monolayer Fe2IBr (FeI0.5Br0.5) as a representative PQAHI, is generalized to monolayer FeI1-xBrx (x = 0.25 and 0.75) with α and ß phases. By first-principles calculations, it is proved that monolayer FeI1-xBrx (x = 0.25 and 0.75) are dynamically, mechanically and thermally stable. They are excellent room-temperature PQAHIs with high Curie temperatures, sizable gaps and high Chern number (C = 2). Because the considered crystal structures of α and ß phases possess Mx and My mirror symmetries, the topological properties of monolayer FeI1-xBrx (x = 0.25 and 0.75) are maintained. Namely, if the constructed structures have Mx and My mirror symmetries, the mixing ratio of Br and I atoms can be generalized for other proportions. It is also found that different crystal phases have important effects on the out-of-plane piezoelectric response, and the piezoelectric strain coefficient, d32, of the ß phase is higher than or comparable with those of other known two-dimensional (2D) materials. To further confirm this idea, the physical and chemical properties of monolayer LiFeSe0.75S0.25 with α and ß phases, as a generalization of PQAHI LiFeSe0.5S0.5, is investigated, as it has a similar electronic structure, magnetic and topological properties as LiFeSe0.5S0.5. Our work provides a practical guide to achieve PQAHIs experimentally, and the combination of piezoelectricity, topological and ferromagnetic (FM) orders makes Fe2I2-based monolayers a potential platform for multi-functional spintronics and piezoelectric electronics.

17.
Phys Chem Chem Phys ; 23(39): 22443-22450, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34585695

RESUMEN

Two-dimensional (2D) piezoelectric ferromagnetism (PFM) is essential for the development of the next-generation multifunctional spintronic technologies. Recently, the layered van der Waals (vdW) compound MnBi2Te4 as a platform to realize the quantum anomalous Hall effect (QAHE) has attracted great interest. In this work, the Janus monolayer MnSbBiTe4 with dynamic, mechanical and thermal stabilities is constructed from a synthesized non-piezoelectric MnBi2Te4 monolayer by replacing the top Bi atomic layer with Sb atoms. The calculated results show that monolayer MnSbBiTe4 is an intrinsic ferromagnetic (FM) semiconductor with a gap value of 0.25 eV, whose easy magnetization axis is out-of-plane direction with magnetic anisotropy energy (MAE) of 158 µeV per Mn. The predicted Curie temperature TC is about 20.3 K, which is close to that of monolayer MnBi2Te4. The calculated results show that the in-plane d11 is about 5.56 pm V-1, which is higher than or comparable to those of other 2D known materials. Moreover, it is found that strain engineering can effectively tune the piezoelectric properties of Janus monolayer MnSbBiTe4. The calculated results show that tensile strain can improve the d11, which is improved to be 21.16 pm V-1 at only 1.04 strain. It is proved that the ferromagnetic order, semiconducting properties, out-of-plane easy axis and a large d11 are robust against electronic correlations. Our work provides a possible way to achieve PFM with a large d11 in well-explored vdW compound MnBi2Te4, which makes it possible to use the piezoelectric effect to tune the quantum transport process.

18.
Nanoscale ; 13(30): 12956-12965, 2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34477779

RESUMEN

A two-dimensional (2D) material with piezoelectricity, topological and ferromagnetic (FM) properties, namely a 2D piezoelectric quantum anomalous hall insulator (PQAHI), may open new opportunities to realize novel physics and applications. Here, by first-principles calculations, a family of 2D Janus monolayer Fe2IX (X = Cl and Br) with dynamic, mechanical, and thermal stabilities is predicted to be a room-temperature PQAHI. In the absence of spin-orbit coupling (SOC), the monolayer Fe2IX (X = Cl and Br) is in a half Dirac semimetal state. When the SOC is included, these monolayers become quantum anomalous Hall (QAH) states with sizable gaps (more than 200 meV) and two chiral edge modes (Chern number C = 2). It is also found that the monolayer Fe2IX (X = Cl and Br) possesses robust QAH states against the biaxial strain. By symmetry analysis, it is found that only an out-of-plane piezoelectric response can be induced by a uniaxial strain in the basal plane. The calculated out-of-plane d31 of Fe2ICl (Fe2IBr) is 0.467 pm V-1 (0.384 pm V-1), which is higher than or comparable with those of other 2D known materials. Meanwhile, using Monte Carlo (MC) simulations, the Curie temperature TC is estimated to be 429/403 K for the monolayer Fe2ICl/Fe2IBr at the FM ground state, which is above room temperature. Finally, the interplay of electronic correlations with nontrivial band topology is studied to confirm the robustness of the QAH state. The combination of piezoelectricity, topological and FM orders makes the monolayer Fe2IX (X = Cl and Br) become a potential platform for multi-functional spintronic applications with a large gap and high TC. Our work provides the possibility to use the piezotronic effect to control QAH effects, and can stimulate further experimental works.

19.
Phys Chem Chem Phys ; 22(48): 28359-28364, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33300909

RESUMEN

The septuple-atomic-layer VSi2P4 with the same structure of experimentally synthesized MoSi2N4 is predicted to be a spin-gapless semiconductor (SGS) with the generalized gradient approximation (GGA). In this work, the biaxial strain is applied to tune the electronic properties of VSi2P4, and it spans a wide range of properties upon increasing the strain from a ferromagnetic metal (FMM) to SGS to a ferromagnetic semiconductor (FMS) to SGS to a ferromagnetic half-metal (FMHM). Due to broken inversion symmetry, the coexistence of ferromagnetism and piezoelectricity can be achieved in FMS VSi2P4 with the strain range of 0% to 4%. The calculated piezoelectric strain coefficients d11 for 1%, 2% and 3% strains are 4.61 pm V-1, 4.94 pm V-1 and 5.27 pm V-1, respectively, which are greater than or close to a typical value of 5 pm V-1 for bulk piezoelectric materials. Finally, similar to VSi2P4, the coexistence of piezoelectricity and ferromagnetism can be realized by strain in the VSi2N4 monolayer. Our works show that VSi2P4 in the FMS phase with intrinsic piezoelectric properties can have potential applications in spin electronic devices.

20.
Phys Chem Chem Phys ; 21(44): 24620-24628, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31670329

RESUMEN

The Janus structure, by combining properties of different transition metal dichalcogenide (TMD) monolayers in a single polar material, has attracted increasing research interest because of its particular structure and potential application in electronics, optoelectronics and piezoelectronics. In this work, Janus SnSSe monolayer is predicted by means of first-principles calculations, and it exhibits dynamic and mechanical stability. By using the generalized gradient approximation (GGA) and spin-orbit coupling (SOC), the Janus SnSSe monolayer is found to be an indirect band-gap semiconductor, whose gap can easily be tuned by strain. High carrier mobilities are obtained for SnSSe monolayer, and the hole mobility is higher than the electron mobility. For SnSSe monolayer, a uniaxial strain in the basal plane can induce both strong in-plane and much weaker out-of-plane piezoelectric polarizations, which reveals the potential as a piezoelectric two-dimensional (2D) material. High absorption coefficients in the visible light region are observed, suggesting a potential photocatalytic application. Calculated results show that SnSSe monolayer has a very high power factor, making it a promising candidate for thermoelectric applications. Our works reveal that the Janus SnSSe structure can be fabricated with unique electronic, optical, piezoelectric and transport properties, and can motivate related experimental works.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...