Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(39): 46108-46118, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37740925

RESUMEN

Indacenodithiophene-benzothiadiazole (IDT-BT) has emerged as one of the most promising candidates for stretchable electronics due to its good stretchability and high mobility. Here, we present an air/liquid interface self-assembly method for the stretchable IDT-BT films and design an air-side transfer adherence strategy for improving the carrier mobility of IDT-BT. By controlling the cosolvent ratio in solution and the solvent evaporation rate, the large-scale intrinsically stretchable IDT-BT film with the diameter as high as ∼3 cm was self-assembled at the air/liquid interface. The resulting stretchable film with lightweight and good uniformity could be easily transferred to curved objects such as flexible 3 M tape, glass ball, and seashell. It is found that the transfer adherence strategy of the semiconductor film significantly affects the carrier transport. The transfer adherence from air-side can effectively decrease the number of the adsorbed water molecules at semiconductor/dielectric interface, which presents the mobility as high as 2.98 cm2 V-1 s-1. Based on the air/liquid interface self-assembled IDT-BT film, the peeling process of the film for preparation of full stretchable transistors could be eliminated. The resulting intrinsically stretchable transistor exhibits mobility higher than that of the transistor with a conventional spin-coated film. Our research provides new pathways for preparing the stretchable films and intrinsically stretchable organic field-effect transistors and shows the promising potential of the air/liquid interface self-assembly strategy for stretchable electronics.

2.
Adv Sci (Weinh) ; 10(29): e2302974, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37610561

RESUMEN

Intrinsically stretchable gas sensors possess outstanding advantages in seamless conformability and high-comfort wearability for real-time detection toward skin/respiration gases, making them promising candidates for health monitoring and non-invasive disease diagnosis and therapy. However, the strain-induced deformation of the sensitive semiconductor layers possibly causes the sensing signal drift, resulting in failure in achievement of the reliable gas detection. Herein, a surprising result that the stretchable organic polymers present a universal strain-insensitive gas sensing property is shown. All the stretchable polymers with different degrees of crystallinity, including indacenodithiophene-benzothiadiazole (PIDTBT), diketo-pyrrolo-pyrrole bithiophene thienothiophene (DPPT-TT) and poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiad-iazolo [3,4-c] pyridine] (PCDTPT), show almost unchanged gas response signals in the different stretching states. This outstanding advantage enables the intrinsically stretchable devices to imperceptibly adhere on human skin and well conform to the versatile deformations such as bending, twisting, and stretching, with the highly strain-stable gas sensing property. The intrinsically stretchable PIDTBT sensor also demonstrates the excellent selectivity toward the skin-emitted trimethylamine (TMA) gas, with a theoretical limit of detection as low as 0.3 ppb. The work provides new insights into the preparation of the reliable skin-like gas sensors and highlights the potential applications in the real-time detection of skin gas and respiration gas for non-invasive medical treatment and disease diagnosis.


Asunto(s)
Semiconductores , Piel , Humanos , Polímeros , Dispositivos Electrónicos Vestibles
3.
ACS Appl Mater Interfaces ; 15(1): 1726-1735, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36580610

RESUMEN

The use of cost-effective renewable raw materials to develop electronic devices has been strongly demanded for sustainable and biodegradable green electronics. Here, by taking inspiration from the traditional calligraphy and kirigami/origami arts, we show a novel cuttable and foldable all-paper touch-temperature sensors fabricated by simply brushing the carbon black ink onto the cellulose paper followed by a layer-layer lamination strategy. The use of environmentally friendly common commodities in daily life including carbon black ink and cellulose paper as the main component materials of sensors effectively lowers the cost and has positive impacts on the environment and health. The sensors can be freely cut or folded into the targeted shapes and can even reversibly morph between 2D and 3D configurations without affecting device function. Additionally, the sensors show a discrimination capability toward pressure and temperature. Our fabrication strategy provides a promising approach for creating the low-cost eco-friendly sensors with a versatile pattern design and a morphing shape without sacrificing the global structural integrity and device functionality.

4.
ACS Appl Mater Interfaces ; 12(47): 52992-53002, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33170620

RESUMEN

Gas sensors based on polymer field-effect transistors (FETs) have drawn much attention owing to the inherent merits of specific selectivity, low cost, and room temperature operation. Ultrathin (<10 nm) and porous polymer semiconductor films offer a golden opportunity for achieving high-performance gas sensors. However, wafer-scale fabrication of such high-quality polymer films is of great challenge and has rarely been realized before. Herein, the first demonstration of 4 in. wafer-scale, cobweb-like, and ultrathin porous polymer films is reported via a one-step phase-inversion process. This approach is extremely simple and universal for constructing various ultrathin porous polymer semiconductor films. Thanks to the abundant pores, ultrathin size, and high charge-transfer efficiency of the prepared polymer films, our gas sensors exhibit many superior advantages, including ultrahigh response (2.46 × 106%), low limit of detection (LOD) (<1 ppm), and excellent selectivity. Thus, the proposed fabrication strategy is exceptionally promising for mass manufacturing of low-cost high-performance polymer FET-based gas sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...