Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769206

RESUMEN

Structurally ordered L10-PtM (M = Fe, Co, Ni and so on) intermetallic nanocrystals, benefiting from the chemically ordered structure and higher stability, are one of the best electrocatalysts used for fuel cells. However, their practical development is greatly plagued by the challenge that the high-temperature (>600 °C) annealing treatment necessary for realizing the ordered structure usually leads to severe particle sintering, morphology change and low ordering degree, which makes it very difficult for the gram-scale preparation of desirable PtM intermetallic nanocrystals with high Pt content for practical fuel cell applications. Here we report a new concept involving the low-melting-point-metal (M' = Sn, Ga, In)-induced bond strength weakening strategy to reduce Ea and promote the ordering process of PtM (M = Ni, Co, Fe, Cu and Zn) alloy catalysts for a higher ordering degree. We demonstrate that the introduction of M' can reduce the ordering temperature to extremely low temperatures (≤450 °C) and thus enable the preparation of high-Pt-content (≥40 wt%) L10-Pt-M-M' intermetallic nanocrystals as well as ten-gram-scale production. X-ray spectroscopy studies, in situ electron microscopy and theoretical calculations reveal the fundamental mechanism of the Sn-facilitated ordering process at low temperatures, which involves weakened bond strength and consequently reduced Ea via Sn doping, the formation and fast diffusion of low-coordinated surface free atoms, and subsequent L10 nucleation. The developed L10-Ga-PtNi/C catalysts display outstanding performance in H2-air fuel cells under both light- and heavy-duty vehicle conditions. Under the latter condition, the 40% L10-Pt50Ni35Ga15/C catalyst delivers a high current density of 1.67 A cm-2 at 0.7 V and retains 80% of the current density after extended 90,000 cycles, which exceeds the United States Department of Energy performance metrics and represents among the best cathodic electrocatalysts for practical proton-exchange membrane fuel cells.

2.
Adv Mater ; : e2405184, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777567

RESUMEN

Cathode-electrolyte interphase (CEI) is crucial for the reversibility of rechargeable batteries, yet receives less attention compared to solid-electrolyte interphase (SEI). The prevalent weakly-solvating electrolyte is usually proposed from the standing point of obtaining robust SEI, however, the resultant weak ion-solvent interaction gives rise to excessive free solvents and forms thick CEI with high kinetic barriers, which is disadvantageous for interfacial stability at the high working voltage. Herein, we report a highly-solvating electrolyte to immobilize free solvents by generating stable ternary complexes and facilitate the growth of homogeneous and ultrathin CEI to boost the electrochemical performances of potassium-ion batteries (PIBs). Through time-of-flight secondary ion mass spectrometry and cryogenic transmission electron microscopy, we reveal that the deliberately coordinated complexes are the key to forming mechanically stable and inorganic-rich CEI with superior diffusion kinetics for high-performing PIBs. Coupling with a K0.5MnO2 cathode and a soft carbon (SC) anode, we achieve a high energy density (202.3 Wh kg-1) with an exceptional cycle lifespan (92.5% capacity retention after 500 cycles) in a SC||K0.5MnO2 full cell, setting new performance benchmarks for PIBs. This article is protected by copyright. All rights reserved.

3.
J Am Chem Soc ; 146(14): 9721-9727, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38556809

RESUMEN

The volumetric density of the metal atomic site is decisive to the operating efficiency of the photosynthetic nanoreactor, yet its rational design and synthesis remain a grand challenge. Herein, we report a shell-regulating approach to enhance the volumetric density of Co atomic sites onto/into multishell ZnxCd1-xS for greatly improving CO2 photoreduction activity. We first establish a quantitative relation between the number of shell layers, specific surface areas, and volumetric density of atomic sites on multishell ZnxCd1-xS and conclude a positive relation between photosynthetic performance and the number of shell layers. The triple-shell ZnxCd1-xS-Co1 achieves the highest CO yield rate of 7629.7 µmol g-1 h-1, superior to those of the double-shell ZnxCd1-xS-Co1 (5882.2 µmol g-1 h-1) and single-shell ZnxCd1-xS-Co1 (4724.2 µmol g-1 h-1). Density functional theory calculations suggest that high-density Co atomic sites can promote the mobility of photogenerated electrons and enhance the adsorption of Co(bpy)32+ to increase CO2 activation (CO2 → CO2* → COOH* → CO* → CO) via the S-Co-bpy interaction, thereby enhancing the efficiency of photocatalytic CO2 reduction.

4.
Small ; : e2400963, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686696

RESUMEN

Biomolecule-functionalized nanoparticles represent a type of promising biomaterials in biomedical applications owing to their excellent biocompatibility and versatility. DNA-based reactions on nanoparticles have enabled emerging applications including intelligent biosensors, drug delivery, and biomimetic devices. Among the reactions, strand hybridization is the critical step to control the sensitivity and specificity of biosensing, and the efficiency of drug delivery. However, a comprehensive understanding of DNA hybridization on nanoparticles is still lacking, which may differ from the process in homogeneous solutions. To address this limitation, coarse-grained model-based molecular dynamic simulation is harnessed to disclose the critical factors involved in intermolecular hybridization. Based on simulation guidance, DNA walker-based smart theranostic platform (DWTP) based on "on-particle" hybridization is developed, showing excellent consistency with simulation. DWTP is successfully applied for highly sensitive miRNA 21 detection and tumor-specific miRNA 21 imaging, driven by tumor-endogenous APE 1 enzyme. It enables the precise release of antisense oligonucleotide triggered by tumor-endogenous dual-switch miRNA 21 and APE 1, facilitating effective gene silencing therapy with high biosafety. The simulation of "on-particle" DNA hybridization has improved the corresponding biosensing performance and the release efficiency of therapeutic agents, representing a conceptually new approach for DNA-based device design.

5.
J Am Chem Soc ; 146(14): 10023-10031, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38554097

RESUMEN

Single-atom nanozyme-based catalytic therapy is of great interest in the field of tumor catalytic therapy; however, their development suffers from the low affinity of nanozymes to the substrates (H2O2 or O2), leading to deficient catalytic activity in the tumor microenvironment. Herein, we report a new strategy for precisely tuning the d-band center of dual-atomic sites to enhance the affinity of metal atomic sites and substrates on a class of edge-rich N-doped porous carbon dual-atomic sites Fe-Mn (Fe1Mn1-NCe) for greatly boosting multiple-enzyme-like catalytic activities. The as-made Fe1Mn1-NCe achieved a much higher catalytic efficiency (Kcat/Km = 4.01 × 105 S-1·M-1) than Fe1-NCe (Kcat/Km = 2.41 × 104 S-1·M-1) with an outstanding stability of over 90% activity retention after 1 year, which is the best among the reported dual-atom nanozymes. Theoretical calculations reveal that the synergetic effect of Mn upshifts the d-band center of Fe from -1.113 to -0.564 eV and enhances the adsorption capacity for the substrate, thus accelerating the dissociation of H2O2 and weakening the O-O bond on O2. We further demonstrated that the superior enzyme-like catalytic activity of Fe1Mn1-NCe combined with photothermal therapy could effectively inhibit tumor growth in vivo, with an inhibition rate of up to 95.74%, which is the highest value among the dual-atom artificial enzyme therapies reported so far.


Asunto(s)
Peróxido de Hidrógeno , Neoplasias , Humanos , Adsorción , Carbono , Catálisis , Microambiente Tumoral
6.
Small Methods ; : e2400336, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517268

RESUMEN

Industrializing water electrolyzers demands better electrocatalysts, especially for the anodic oxygen evolution reaction (OER). The prevailing OER catalysts are Ir or Ru-based nanomaterials, however, they still suffer from insufficient stability. An alternative yet considerably less explored approach is to upgrade Rh, a known stable but moderately active element for OER electrocatalysis, via rational structural engineering. Herein, a precise synthesis of assembled RhRuFe trimetallenes (RhRuFe TMs) with an average thickness of 1 nm for boosting overall water splitting catalysis is reported. Favorable mass transport and optimized electronic structure collectively render RhRuFe TMs with an improved OER activity of an overpotential of 330 mV to deliver 10 mA cm-2, which is significantly lower than the Rh/C control (by 601 mV) and reported Rh-based OER electrocatalysts. In particular, the RhRuFe TMs-based water splitting devices can achieve the current density of 10 mA cm-2 at a low voltage of 1.63 V, which is among the best in the Rh-based bifunctional catalysts for electrolyzers. The addition of Fe in RhRuFe TMs can modulate the strain/electron distribution of the multi-alloy, which regulates the binding energies of H* and OH* in hydrogen and oxygen evolution reactions for achieving the enhanced bifunctional OER and HER catalysis is further demonstrated.

7.
Nat Commun ; 15(1): 2290, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480686

RESUMEN

The precise structural integration of single-atom and high-entropy-alloy features for energy electrocatalysis is highly appealing for energy conversion, yet remains a grand challenge. Herein, we report a class of single-atom Mo-tailored PdPtNiCuZn high-entropy-alloy nanosheets with dilute Pt-Pt ensembles and intrinsic tensile strain (Mo1-PdPtNiCuZn) as efficient electrocatalysts for enhancing the methanol oxidation reaction catalysis. The as-made Mo1-PdPtNiCuZn delivers an extraordinary mass activity of 24.55 A mgPt-1 and 11.62 A mgPd+Pt-1, along with impressive long-term durability. The planted oxophilic Mo single atoms as promoters modify the electronic structure of isolated Pt sites in the high-entropy-alloy host, suppressing the formation of CO adsorbates and steering the reaction towards the formate pathway. Meanwhile, Mo promoters and tensile strain synergistically optimize the adsorption behaviour of intermediates to achieve a more energetically favourable pathway and minimize the methanol oxidation reaction barrier. This work advances the design of atomically precise catalytic sites by creating a new paradigm of single atom-tailored high-entropy alloys, opening an encouraging pathway to the design of CO-tolerance electrocatalysts.

8.
Angew Chem Int Ed Engl ; 63(15): e202319798, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38353370

RESUMEN

Direct saline (seawater) electrolysis is a well-recognized system to generate active chlorine species for the chloride-mediated electrosynthesis, environmental remediation and sterilization over the past few decades. However, the large energy consumption originated from the high cell voltage of traditional direct saline electrolysis system, greatly restricts its practical application. Here, we report an acid-saline hybrid electrolysis system for energy-saving co-electrosynthesis of active chlorine and H2. We demonstrate that this system just requires a low cell voltage of 1.59 V to attain 10 mA cm-2 with a large energy consumption decrease of 27.7 % compared to direct saline electrolysis system (2.20 V). We further demonstrate that such acid-saline hybrid electrolysis system could be extended to realize energy-saving and sustainable seawater electrolysis. The acidified seawater in this system can absolutely avoid the formation of Ca/Mg-based sediments that always form in the seawater electrolysis system. We also prove that this system in the half-flow mode can realize real-time preparation of active chlorine used for sterilization and pea sprout production.

9.
Angew Chem Int Ed Engl ; 63(13): e202314876, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38305641

RESUMEN

The carbonate electrolyte chemistry is a primary determinant for the development of high-voltage lithium metal batteries (LMBs). Unfortunately, their implementation is greatly plagued by sluggish electrode interfacial dynamics and insufficient electrolyte thermodynamic stability. Herein, lithium trifluoroacetate-lithium nitrate (LiTFA-LiNO3 ) dual-salt additive-reinforced carbonate electrolyte (LTFAN) is proposed for stabilizing high-voltage LMBs. We reveal that 1) the in situ generated inorganic-rich electrode-electrolyte interphase (EEI) enables rapid interfacial dynamics, 2) TFA- preferentially interacts with moisture over PF6 - to strengthen the moisture tolerance of designed electrolyte, and 3) NO3 - is found to be noticeably enriched at the cathode interface on charging, thus constructing Li+ -enriched, solvent-coordinated, thermodynamically favorable electric double layer (EDL). The superior moisture tolerance of LTFAN and the thermodynamically stable EDL constructed at cathode interface play a decisive role in upgrading the compatibility of carbonate electrolyte with high-voltage cathode. The LMBs with LTFAN realize 4.3 V-NCM523/4.4 V-NCM622 superior cycling reversibility and excellent rate capability, which is the leading level of documented records for carbonate electrode.

10.
J Am Chem Soc ; 146(7): 4433-4443, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38329948

RESUMEN

Potassium-sulfur (K-S) batteries are severely limited by the sluggish kinetics of the solid-phase conversion of K2S3/K2S2 to K2S, the rate-determining and performance-governing step, which urgently requires a cathode with facilitated sulfur accommodation and improved catalytic efficiency. To this end, we leverage the orbital-coupling approach and herein report a strong d-π coupling catalytic configuration of single-atom Co anchored between two alkynyls of graphdiyne (Co-GDY). The d-π orbital coupling of the Co-C4 moiety fully redistributes electrons two-dimensionally across the GDY, and as a result, drastically accelerates the solid-phase K2S3/K2S2 to K2S conversion and enhances the adsorption of sulfur species. Applied as the cathode, the S/Co-GDY delivered a record-high rate performance of 496.0 mAh g-1 at 5 A g-1 in K-S batteries. In situ and ex situ characterizations coupling density functional theory (DFT) calculations rationalize how the strong d-π orbital coupling of Co-C4 configuration promotes the reversible solid-state transformation kinetics of potassium polysulfide for high-performance K-S batteries.

11.
Environ Sci Pollut Res Int ; 31(10): 14990-15006, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38285257

RESUMEN

With the increase in haze pollution in Chinese cities, answering the question of whether using a high-speed rail (HSR) as a green and efficient transportation system can alleviate haze pollution in China has become a research hotspot. This study empirically tests the impact of HSR network construction on haze pollution and its spatial spillover effects. (1) The construction of a HSR would have a mitigation effect on haze pollution in node cities and surrounding cities, and the more developed the HSR is, the more significant that this effect would be. (2) Haze pollution persists for a long time, the haze pollution from the previous year may have a positive promoting effect on the haze pollution in the following year. (3) The use of a HSR reduces haze pollution by replacing traditional road transportation and promoting industrial structure upgrading and technological innovation. (4) The inhibitory effect of HSR use on haze pollution varies due to regional differences and variation in city size.


Asunto(s)
Contaminación del Aire , Contaminación del Aire/análisis , Modelos Econométricos , Contaminación Ambiental , Ciudades , China , Red Social , Desarrollo Económico
12.
Angew Chem Int Ed Engl ; 63(11): e202319108, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38196079

RESUMEN

Engineering isolated metal sites resembling the primary coordination sphere of metallocofactors enables atomically dispersed materials as promising nanozymes. However, most existing nanozymes primarily focus on replicating specific metallocofactors while neglecting other supporting cofactors within active pockets, leading to reduced electron transfer (ET) efficiency and thus inferior catalytic performances. Herein, we report a metal-organic framework UiO-67 nanozyme with atomically dispersed iron sites, which involves multiple tailored enzyme-like nanocofactors that synergistically drive the ET process for enhanced peroxidase-like catalysis. Among them, the linker-coupled atomic iron site plays a critical role in substrate activation, while bare linkers and zirconia nodes facilitate the ET efficiency of intermediates. The synergy of three nanocofactors results in a 4.29-fold enhancement compared with the single effort of isolated metal site-based nanocofactor, holding promise in immunoassay for sensitive detection of chlorpyrifos. This finding opens a new way for designing high-performance nanozymes by harmonizing various nanocofactors at the atomic and molecular scale.


Asunto(s)
Oxidorreductasas , Peroxidasa , Peroxidasas , Hierro/química , Catálisis
13.
J Am Chem Soc ; 146(4): 2339-2344, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38237055

RESUMEN

Li-O2 batteries (LOBs) are considered as one of the most promising energy storage devices due to their ultrahigh theoretical energy density, yet they face the critical issues of sluggish cathode redox kinetics during the discharge and charge processes. Here we report a direct synthetic strategy to fabricate a single-atom alloy catalyst in which single-atom Pt is precisely dispersed in ultrathin Pd hexagonal nanoplates (Pt1Pd). The LOB with the Pt1Pd cathode demonstrates an ultralow overpotential of 0.69 V at 0.5 A g-1 and negligible activity loss over 600 h. Density functional theory calculations show that Pt1Pd can promote the activation of the O2/Li2O2 redox couple due to the electron localization caused by the single Pt atom, thereby lowering the energy barriers for the oxygen reduction and oxygen evolution reactions. Our strategy for designing single-atom alloy cathodic catalysts can address the sluggish oxygen redox kinetics in LOBs and other energy storage/conversion devices.

14.
Nano Lett ; 24(5): 1602-1610, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38286023

RESUMEN

Metallene materials with atomic thicknesses are receiving increasing attention in electrocatalysis due to ultrahigh surface areas and distinctive surface strain. However, the continuous strain regulation of metallene remains a grand challenge. Herein, taking advantage of autocatalytic reduction of Cu2+ on biaxially strained, carbon-intercalated Ir metallene, we achieve control over the carbon extraction kinetics, enabling fine regulation of carbon intercalation concentration and continuous tuning of (111) in-plane (-2.0%-2.6%) and interplanar (3.5%-8.8%) strains over unprecedentedly wide ranges. Electrocatalysis measurements reveal the strain-dependent activity toward hydrogen evolution reaction (HER), where weakly strained Ir metallene (w-Ir metallene) with the smallest lattice constant presents the highest mass activity of 2.89 A mg-1Ir at -0.02 V vs reversible hydrogen electrode (RHE). Theoretical calculations validated the pivotal role of lattice compression in optimizing H binding on carbon-intercalated Ir metallene surfaces by downshifting the d-band center, further highlighting the significance of strain engineering for boosted electrocatalysis.

15.
Adv Mater ; 36(8): e2306292, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37723937

RESUMEN

Nanozymes, as one of the most efficient reactive oxygen species (ROS)-scavenging biomaterials, are receiving wide attention in promoting diabetic wound healing. Despite recent attempts at improving the catalytic efficiency of Pt-based nanozymes (e.g., PtCu, one of the best systems), they still display quite limited ROS scavenging capacity and ROS-dependent antibacterial effects on bacteria or immunocytes, which leads to uncontrolled and poor diabetic wound healing. Hence, a new class of multifunctional PtCuTe nanosheets with excellent catalytic, ROS-independent antibacterial, proangiogenic, anti-inflammatory, and immuno-modulatory properties for boosting the diabetic wound healing, is reported. The PtCuTe nanosheets show stronger ROS scavenging capacity and better antibacterial effects than PtCu. It is also revealed that the PtCuTe can enhance vascular tube formation, stimulate macrophage polarization toward the M2 phenotype and improve fibroblast mobility, outperforming conventional PtCu. Moreover, PtCuTe promotes crosstalk between different cell types to form a positive feedback loop. Consequently, PtCuTe stimulates a proregenerative environment with relevant cell populations to ensure normal tissue repair. Utilizing a diabetic mouse model, it is demonstrated that PtCuTe significantly facilitated the regeneration of highly vascularized skin, with the percentage of wound closure being over 90% on the 8th day, which is the best among the reported comparable multifunctional biomaterials.


Asunto(s)
Diabetes Mellitus , Cicatrización de Heridas , Animales , Ratones , Especies Reactivas de Oxígeno , Piel , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Materiales Biocompatibles/farmacología , Hidrogeles
16.
Adv Sci (Weinh) ; 11(8): e2305806, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37985557

RESUMEN

Aqueous zinc-ion batteries (AZIBs) are gaining popularity for their cost-effectiveness, safety, and utilization of abundant resources. MXenes, which possess outstanding conductivity, controllable surface chemistry, and structural adaptability, are widely recognized as a highly versatile platform for AZIBs. MXenes offer a unique set of functions for AZIBs, yet their significance has not been systematically recognized and summarized. This review article provides an up-to-date overview of MXenes-based electrode materials for AZIBs, with a focus on the unique functions of MXenes in these materials. The discussion starts with MXenes and their derivatives on the cathode side, where they serve as a 2D conductive substrate, 3D framework, flexible support, and coating layer. MXenes can act as both the active material and a precursor to the active material in the cathode. On the anode side, the functions of MXenes include active material host, zinc metal surface protection, electrolyte additive, and separator modification. The review also highlights technical challenges and key hurdles that MXenes currently face in AZIBs.

17.
Angew Chem Int Ed Engl ; 63(7): e202317987, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38152839

RESUMEN

Platinum metal (PtM, M=Ni, Fe, Co) alloys catalysts show high oxygen reduction reaction (ORR) activity due to their well-known strain and ligand effects. However, these PtM alloys usually suffer from a deficient ORR durability in acidic environment as the alloyed metal is prone to be dissolved due to its high electronegativity. Herein, we report a new class of PtMn alloy nanodendrite catalyst with low-electronegativity Mn-contraction for boosting the oxygen reduction durability of fuel cells. The moderate strain in PtMn, induced by Mn contraction, yields optimal oxygen reduction activity at 0.53 A mg-1 at 0.9 V versus reversible hydrogen electrode (RHE). Most importantly, we show that relative to well-known high-electronegativity Ni-based Pt alloy counterpart, the PtMn nanodendrite catalyst experiences less transition metals' dissolution in acidic solution and achieves an outstanding mass activity retention of 96 % after 10,000 degradation cycles. Density functional theory calculation reveals that PtMn alloys are thermodynamically more stable than PtNi alloys in terms of formation enthalpy and cohesive energy. The PtMn nanodendrite-based membrane electrode assembly delivers an outstanding peak power density of 1.36 W cm-2 at a low Pt loading and high-performance retention over 50 h operations at 0.6 V in H2 -O2 hydrogen fuel cells.

18.
Phys Rev Lett ; 131(21): 210603, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38072603

RESUMEN

Fault-tolerant quantum computing based on surface code has emerged as an attractive candidate for practical large-scale quantum computers to achieve robust noise resistance. To achieve universality, magic states preparation is a commonly approach for introducing non-Clifford gates. Here, we present a hardware-efficient and scalable protocol for arbitrary logical state preparation for the rotated surface code, and further experimentally implement it on the Zuchongzhi 2.1 superconducting quantum processor. An average of 0.8983±0.0002 logical fidelity at different logical states with distance three is achieved, taking into account both state preparation and measurement errors. In particular, the logical magic states |A^{π/4}⟩_{L}, |H⟩_{L}, and |T⟩_{L} are prepared nondestructively with logical fidelities of 0.8771±0.0009, 0.9090±0.0009, and 0.8890±0.0010, respectively, which are higher than the state distillation protocol threshold, 0.859 (for H-type magic state) and 0.827 (for T-type magic state). Our work provides a viable and efficient avenue for generating high-fidelity raw logical magic states, which is essential for realizing non-Clifford logical gates in the surface code.

19.
Nano Lett ; 23(22): 10600-10607, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37942960

RESUMEN

Optimizing the local coordination environment of metal centers in metal-organic frameworks (MOFs) is crucial yet challenging for regulating the overpotential of lithium-oxygen (Li-O2) batteries. Herein, we report the synthesis of a class of PbO7 nodes in a single crystal MOF (naphthalene-lead-MOF, known as Na-Pb-MOF) to significantly enhance the kinetics of both discharge and charge processes. Compared to the PbO6 node in the single-crystal tetramethoxy-lead-MOF (4OMe-Pb-MOF), the bond length between Pb and O in the PbO7 node of Na-Pb-MOF increases, resulting in weaker Pb 5d-O 2p orbital coupling, which optimizes the adsorption interaction toward intermediates, and thereby promotes the rate-determining steps of both the reduction of LiO2 to Li2O2 and the oxidation of LiO2 to O2 for reducing the activation energy of the overall reaction. Consequently, Li-O2 batteries based on Na-Pb-MOF electrocatalysts exhibit a low total charge-discharge overpotential of 0.52 V and an excellent cycle life of 140 cycles.

20.
Chem Rev ; 123(22): 12507-12593, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37910391

RESUMEN

Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...